Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2005-2pp.149-156

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 40, Issue 2 / 2005 | Next article >>
E. P. Kligman, V. P. Matveenko, and N. A. Yurlova, "Dynamic behavior of thin-walled electroelastic systems," Mech. Solids. 40 (2), 149-156 (2005)
Year 2005 Volume 40 Number 2 Pages 149-156
Title Dynamic behavior of thin-walled electroelastic systems
Author(s) E. P. Kligman (Perm)
V. P. Matveenko (Perm)
N. A. Yurlova (Perm)
Abstract Embedding of materials possessing piezoelectric properties in shell structures provides a means of optimizing the dynamic behavior of such systems. The external RLC circuits connecting the electroded portions of piezoelectric elements increase the number of parameters affecting the structure resonant frequencies, natural vibration modes, and damping characteristics. Dynamic behavior of such systems can be determined by solving the spectral electroelasticity problem in its complex-valued formulation. Within this framework, the complex-valued eigenfunctions determine the vibration modes and phases, whereas the complex eigenvalues provide the resonant frequencies and damping characteristics. The variation of the external RLC circuit parameters provides a means for the optimization of the dynamic behavior of structures.
1.  S. Yoshikawa, U. Selvaraj, K. G. Brooks, and S. K. Kurtz, "Piezoelectric PZT tubes and fibers for passive vibration damping," in ISAF'92: Proc. 9th IEEE Intern. Symp. Appl. Ferroelectrics, pp. 269-272, 1992.
2.  V. P. Matveyenko and E. P. Kligman, "Natural vibration problem of viscoelastic solids applied to optimization of dissipative properties of constructions," J. Vibration and Control, Vol. 3, No. 1, pp. 87-102, 1997.
3.  V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures [in Russian], Mashinostroenie, Moscow, 1980.
4.  A. S. Kravchuk V. P. Maiboroda, and Yu. S. Urzhumtsev, Mechanics of Polymer and Composite Materials [in Russian], Nauka, Moscow, 1985.
5.  V. P. Matveenko, E. P. Kligman, and N. A. Yurlova, "Optimization of damping properties of structures manufactured from viscoelastic materials," in Mechanics and Strength of Aviation Structures [in Russian], pp. 175-184, Ufimsk. Aviats. Tekhn. Un-t, Ufa, 2001.
6.  I. N. Vekua, Foundamentals of Tensor Analysis and Theory of Covariants [in Russian], Nauka, Moscow, 1978.
7.  A. I. Borisenko and I. E. Tarapov, Vector Analysis and Basic Tensor Calculus [in Russian], Vishcha Shkola, Kharkov, 1978.
8.  K. Washizu, Variational Methods in Elasticity and Plasticity [Russian translation], Mir, Moscow, 1987.
9.  V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Conductive Bodies [in Russian], Nauka, Moscow, 1988.
10.  V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity [in Russian], Naukova Dumka, Kiev , 1988.
11.  D. J. Inman, "Smart structures solutions to vibration problems," In Proc. ISMA 23, Vol. 1, pp. 1-12, Leuven, Belgium, 1998.
12.  V. P. Matveenko, E. P. Kligman, N. A. Yurlova, and D. V. Grachev, "Control of dynamic behavior of mechanical systems based on piezoelectric-based smart materials," Mat. Modelir. Sistem i Protsessov, No. 9, pp. 85-92, 2001.
Received 21 April 2003
<< Previous article | Volume 40, Issue 2 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100