Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2005-2pp.121-128

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 40, Issue 2 / 2005 | Next article >>
V. I. Astaf'ev and L. V. Stepanova, "The far-range asymptotic behavior of the stress field in the problem of crack growth in a creeping damaged medium," Mech. Solids. 40 (2), 121-128 (2005)
Year 2005 Volume 40 Number 2 Pages 121-128
Title The far-range asymptotic behavior of the stress field in the problem of crack growth in a creeping damaged medium
Author(s) V. I. Astaf'ev (Samara)
L. V. Stepanova (Samara)
Abstract Within the coupled formulation of creep theory and damage mechanics, an approximate solution describing the growth of an antiplane shear crack is obtained. The characteristic feature of the crack problems within the coupled (creep-damage) formulation is the presence of a damage accumulation region near the crack tip and (or) a region of a completely damaged material, in which all stress tensor components and the continuity parameter are equal to zero. Therefore, in addition to the stress-strain state, the investigation of the geometry of the region mentioned is of particular interest. The asymptotic expansions for stress tensor components and the continuity parameter far away from the crack tip are constructed (the far-range stress field asymptotics are obtained). The structure of the region of completely damaged material is presented for various exponents of the power law of creep and the kinetic equation governing the damage accumulation.
References
1.  V. I. Astaf'ev, T. V. Grigorova, and V. A. Pastukhov, "The effect of damage in a creeping material on the stress-strain state near the crack tip," Fiz.-Khim. Mekh. Mater., Vol. 28, No. 1, pp. 5-11, 1992.
2.  V. I. Astaf'ev and T. V. Grigorova, "Stress and damage distributions near the tip of a growing creep crack," Izv. AN. MTT [Mechanics of Solids], No. 3, pp. 160-166, 1995.
3.  V. I. Astaf'ev, Yu. N. Radaev, and L. V. Stepanova, Nonlinear Fracture Mechanics [in Russian], Izd-vo Samark. Un-ta, Samara, 2001.
4.  J. Zhao and X. Zhang, "The asymptotic study of fatigue crack growth based on damage mechanics," Engn. Frac. Mech., Vol. 50, No. 1, pp. 131-141, 1995.
5.  S. B. Lee, M. Lu, and J. Y. Kim, "An asymptotic analysis of a tensile crack in creeping solids coupled with cumulative damage. Part. I. Small damage region around the crack tip," Intern. J. Solids Struct., Vol. 34, No. 24, pp. 3163-3178, 1997.
6.  S. B. Lee, M. Lu, and J. Y. Kim, "An asymptotic analysis of a tensile crack in creeping solids coupled with cumulative damage. Part. I. Large damage region very near the crack tip," Int. J. Solids Struct., Vol. 34, No. 10, pp. 1183-1197, 1997.
7.  J. Zhao and X. Zhang, "On the process zone of a quasi-static growing tensile crack with power-law elastic-plastic damage," Intern. J. Fracture, Vol. 108, No. 4, pp. 383-395, 2001.
8.  S. Murakami, T. Hirano, and Y. Liu, "Asymptotic fields of stress and damage of a mode I creep crack in steady-state growth," Intern. J. Solids Struct., Vol. 37, No. 43, pp. 6203-6220, 2000.
9.  S. Murakami, Y. Liu, and M. Mizuno, "Computaional methods for creep fracture analysis by damage mechanics," Comput. Methods Appl. Mech. Engrg, Vol. 183, No. 1-2, pp. 15-33, 2000.
10.  L. V. Stepanova and M. E. Fedina, "Self-similar solution to the problem of an antiplane shear crack within the coupled formulation (creep-damage couple)," Vestnik Samarsk. Un-ta, No. 4 (18), pp. 128-145, 2000.
11.  H. Riedel, Fracture at High Temperature, Springer, Berlin, 1987.
12.  L. V. Stepanova and M. E. Fedina, "On the geometry of the region of completely damaged material near the tip of an antiplane shear crack within the coupled formulation (creep-damage couple)," Vestnik Samarsk. Un-ta, No. 2 (20), pp. 87-113, 2001.
13.  J. R. Rice and G. F. Rosengren, "Plane strain deformation near a crack tip in a power-hardening material," J. Mech. Phys. Solids, Vol. 16, No. 1, pp. 1-12, 1968.
14.  J. W. Hutchinson, "Singular behavior at the end of tensile crack in a hardening material," J. Mech. Phys. Solids, Vol. 16, No. 1, pp. 13-31, 1968.
15.  L. M. Kachanov, "On the time of fracture under creep conditions," Izv. AN SSSR. OTN, No. 8, pp. 26-31, 1958.
16.  L. M. Kachanov, "On the mechnism of delayed fracture,", In Issues of Strength of Structures [in Russian], Izd-vo AN SSSR, Moscow, 1959.
17.  F. G. Yuan and S. Yang, "Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear," Intern. J. Fracture, Vol. 69, No. 1, pp. 1-26, 1995.
18.  S. Yang, F. G. Yuan, and X. Cai, "Higher order asymptotic elastic-plastic crack-tip fields under antiplane shear," Engn. Frac. Mech., Vol. 54, Pt. 3, pp. 405-422, 1996.
Received 28 August 2003
<< Previous article | Volume 40, Issue 2 / 2005 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100