Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2004-5pp.71-75

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
N. B. Kostyrin, N. V. Minaeva, and Yu. M. Myasnyankin, "Stress-strain state of nearly homogeneous elastoplastic bodies," Mech. Solids. 39 (5), 71-75 (2004)
Year 2004 Volume 39 Number 5 Pages 71-75
Title Stress-strain state of nearly homogeneous elastoplastic bodies
Author(s) N. B. Kostyrin (Voronezh)
N. V. Minaeva (Voronezh)
Yu. M. Myasnyankin (Voronezh)
Abstract In [1-4] an analytical method has been developed for obtaining approximate solutions of some problems describing the stress-strain state of elastoplastic bodies, with their geometric imperfections taken into account. In [5], this method is extended to inhomogeneous bodies.

In the present paper, we consider the plane-strain case and the space of parameters characterizing external disturbances on an elastoplastic body. On the basis of the implicit function theorem, we propose a method for the construction of the boundary of a region in that space in which the solution of the corresponding problem continuously depends on the characteristics describing geometric imperfections of the elastoplastic body and the inhomogeneity of its material. As an example we consider the behavior of an elastoplastic pipe subjected to internal and external pressure.
References
1.  D. D. Ivlev, "Approximate solution of elastoplastic problems in the theory of perfect plasticity," Doklady AN SSSR, Vol. 113, No. 2, pp. 294-296, 1967.
2.  D. D. Ivlev, Mechanics of Plastic Media. Volume 2 [in Russian], Fizmatlit, Moscow, 2002.
3.  D. D. Ivlev and L. V. Ershov, Perturbation Method in the Theory of Elastoplastic Bodies [in Russian], Nauka, Moscow, 1978.
4.  A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Plasticity [in Russian], Fizmatlit, Moscow, 2001.
5.  T. L. Zakharova and D. D. Ivlev, "Approximate solution of plane problems for ideal elastoplastic inhomogeneous bodies," Zh. Prikl. Mekhaniki i Tekhn. Fiziki, Vol. 38, No. 5, pp. 165-172, 1997.
6.  M. M. Filonenko-Borodich, Theory of Elasticity [in Russian], Gostekhizdat, Moscow, 1947.
7.  A. A. Il'yushin, Plasticity [in Russian], Gostekhizdat, Moscow, Leningrad, 1948.
8.  A. N. Kolmogorov and S. V. Fomin, Fundamentals of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow, 1976.
9.  M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow, 1969.
10.  N. V. Minaeva, Perturbation Method in Solid Mechanics [in Russian], Nauchn. Kniga, Moscow, 2002.
11.  N. V. Minaeva, "On the stress-strain state of thick-walled nearly-axisymmetric pipe," Izv. AN. MTT [Mechanics of Solids], No. 3, pp. 72-77, 2002.
12.  A. Yu. Ishlinskii, "Stability of equilibrium of elastic bodies from the standpoint of mathematical elasticity," Ukr. Mat. Zh., Vol. 6, No. 2, pp. 140-146, 1954.
Received 03 June 2003
<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100