Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2004-5pp.105-113

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
G. M. Kulikov, "Strain-displacement relationships that exactly represent large rigid displacements of a shell," Mech. Solids. 39 (5), 105-113 (2004)
Year 2004 Volume 39 Number 5 Pages 105-113
Title Strain-displacement relationships that exactly represent large rigid displacements of a shell
Author(s) G. M. Kulikov (Tambov)
Abstract The finite element method (FEM) has become the most powerful numerical method that is utilized currently for solving problems in mechanics of shells. At the same time, the problem of the construction of curved finite elements for thin shells subject to large displacements and arbitrarily large rotations is still far from being solved [1-3]. This is for that reason that the representation provided by the strain-displacement relationships for rigid displacements of the shell element is inadequate. Therefore, no wonder that since the strain relationships that would be able to represent an arbitrary strain state in local curvilinear coordinates are not available in the literature, the degenerate (isoparametric) element concept [4] has been mostly developed. This concept enables one to represent rigid displacements of the element in the global Cartesian reference frame but requires considerable increase in the computational time [3, 5].

In the literature, there are a lot of versions of both the classical (Kirchhoff-Love) theory of shells and the theory refined on the basis of Timoshenko's hypothesis. However, only some of these theories (e.g., those of [6-9]) provide adequate approximations for rigid displacements of the shell. This observation is validated in [7, 10, 11] for the geometrically linear Kirchhoff-Love theory of shells and in [12] for the refined theory of shells. In the present paper, the results of [12] are extended to shells subject to large displacements and arbitrarily large rotations.
References
1.  A. S. Sakharov and N. Altenbach (Editors), Finite Element Method in Solid Mechanics [in Russian], Vishcha Shkola, Kiev, 1982.
2.  A. I. Golovanov and M. S. Kornishin, Introduction to Finite Element Method for Statics of Thin Shells [in Russian], KFTI AN SSSR, Kazan, 1989.
3.  K. J. Bathe, Finite Element Procedures. Englewood Cliffs, Prentice Hall, New York, 1996.
4.  S. Ahmad, B. M. Irons, and O. C. Zienkiewicz, "Analysis of thick and thin shell structures by curved elements," Intern. J. Numer. Meth. Eng., Vol. 2, No. 3, pp. 419-451, 1970.
5.  A. K. Noor, "Bibliography of books and monographs on finite element technology," Appl. Mech. Rev., Vol. 44, No. 6, pp. 307-317, 1991.
6.  V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudpromgiz, Leningrad, 1962.
7.  A. L. Goldenveizer, Theory of Elastic Thin Shells [in Russian], Nauka, Moscow, 1976.
8.  G. M. Kulikov and S. V. Plotnikova, "Comparative analysis of two algorithms for numerical solution of nonlinear static problems for laminate anisotropic shells of revolution. Pt. 2. Account for transverse reduction," Mekhanika Komposit. Materialov, Vol. 35, No. 4, pp. 425-446, 1999.
9.  G. M. Kulikov, "Refined global approximation theory of mulilayered plates and shells," J. Eng. Mech., Vol. 127, No. 2, pp. 119-125, 2001.
10.  D. Kantin, "The strain-displacement relationships for cylindrical shells," Raketnaya Tekhnika i Kosmonavtika, Vol. 6, No. 9, pp. 219-220, 1968.
11.  D. J. Dawe, Rigid-body motions and strain-displacement equations of curved shell finite elements," Intern. J. Mech. Sci., Vol. 14, No. 9, pp. 569-578, 1972.
12.  G. M. Kulikov and S. V. Plotnikova, "Simple and effective elements based upon Timoshenko-Mindlin shell theory," Comput. Meth. Appl. Mech. Eng., Vol. 191, No. 11-12, pp. 1173-1187, 2002.
13.  V. V. Novozhilov, Theory of Elasticity [in Russian], Sudpromgiz, Leningrad, 1958.
14.  A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation [in Russian], Nauka, Moscow, 1976.
15.  G. M. Kulikov, "Non-linear analysis of multilayered shells under initial stress," Intern. J. Non-linear Mech., Vol. 36, No. 2, pp. 323-334, 2001.
Received 06 May 2002
<< Previous article | Volume 39, Issue 5 / 2004 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100