Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2003-3pp.144-154

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
L. D. Akulenko and S. V. Nesterov, "Natural transverse vibrations of nonhomogeneous beams," Mech. Solids. 38 (3), 144-154 (2003)
Year 2003 Volume 38 Number 3 Pages 144-154
Title Natural transverse vibrations of nonhomogeneous beams
Author(s) L. D. Akulenko (Moscow)
S. V. Nesterov (Moscow)
Abstract Natural vibrations of a strongly nonhomogeneous straight beam with arbitrary boundary conditions corresponding to elastic attachment of its ends are studied. An effective computational procedure is developed for determining transverse vibration frequencies and shapes on the basis of the solution of the eigenvalue/eigenfunction problem for the respective differential operator. On the basis of this procedure, a shooting-type method is developed. Propositions similar to Sturm's comparison theorems and corollaries from these theorems are formulated. The algorithm is tested on standard problems. A parametric synthesis is performed for a family of tapered beams with various boundary conditions that are frequently encountered in applications. The obtained results are compared with the classical results by Kirchhoff, Timoshenko, and Gould.
References
1.  S. Timoshenko, Vibration Problems in Engineering, D. van Nostrand Co., Inc., Toronto, N.-Y., London, 1955.
2.  S. H. Gould, Variational Methods for Eigenvalue Problems, Oxford Univ. Press, London, 1966.
3.  L. Collatz, Eigenwertaufgabem mit technischen Anwendungen, Akad. Verlag, Leipzig, 1963.
4.  L. D. Akulenko, G. V. Kostin, and S. V. Nesterov, "A numerical-analytical method for the analysis of natural vibrations of nonhomogeneous rods," Izv. AN. MTT [Mechanics of Solids], No. 5, pp. 180-191, 1985.
5.  L. D. Akulenko and G. V. Kostin, "Perturbation method in problems of dynamics of nonhomogeneous elastic rods," PMM [Applied Mathematics and Mechanics], Vol. 56, No. 3, pp. 452-464, 1992.
6.  Yu. A. Mitropol'skii and B. I. Moseenkov, Asymptotic Solutions of Partial Differential Equations [in Russian], Vishcha Shkola, Kiev, 1976.
7.  Ph. Hartman, Ordinary Differential Equations, J. Wiley and Sons, N.-Y., London, Sydney, 1964.
8.  E. Kamke, Differentionalgleichungen Lösungsmethoden und Lösungen, Akad. Verlag, Leipzig, 1959.
Received 13 January 2003
<< Previous article | Volume 38, Issue 3 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100