Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2003-1pp.33-40

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 38, Issue 1 / 2003 | Next article >>
A. V. Vlakhova and I. V. Novozhilov, "Separation of motions in a mechanical system with different frequencies that does not contain small or large parameters in an explicit form," Mech. Solids. 38 (1), 33-40 (2003)
Year 2003 Volume 38 Number 1 Pages 33-40
Title Separation of motions in a mechanical system with different frequencies that does not contain small or large parameters in an explicit form
Author(s) A. V. Vlakhova (Moscow)
I. V. Novozhilov (Moscow)
Abstract We consider a linear system close to a conservative system with eigenfrequencies strongly different in absolute values. Unlike [1, 2], the original equations of motion do not contain small parameters or large stiffness coefficients in an explicit form. We construct two versions of an approximate mathematical model governing the motion with respect to the low-frequency components under the action of slow disturbances. To reduce the problem to the Tikhonov singularly perturbed form we previously pass to the normal coordinates for the conservative part of the system.
References
1.  F. L. Chernousko, "Dynamics of systems with elastic members of high stiffness," Izv. AN SSSR. MTT [Mechanics of Solids], No. 4, pp. 101-113, 1983.
2.  I. V. Novozhilov, "A limiting model for a system with elastic members of high stiffness," Izv. AN SSSR. MTT [Mechanics of Solids], No. 4, pp. 24-27, 1988.
3.  B. V. Bulgakov, Vibrations [in Russian], Gostekhizdat, Moscow, 1954.
4.  I. V. Novozhilov, Fractional Analysis [in Russian], Izd-vo MGU, Moscow, 1995.
5.  A. N. Tikhonov, "Systems of differential equations with small parameters at the derivatives," Matem. Sbornik, Vol. 31(73), No. 3, pp. 575-586, 1952.
6.  A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow, 1973.
7.  A. I. Klimushev and N. N. Krasovskii, "Uniform asymptotic stability of systems of differential equations with a small parameter at higher-order derivatives," PMM [Applied Mathematics and Mechanics], Vol. 25, No. 4, pp. 680-690, 1961.
8.  N. N. Bukhgol'ts, Fundamental Course in Theoretical Mechanics. Part 2 [in Russian], Nauka, Moscow, 1972.
Received 08 November 2000
<< Previous article | Volume 38, Issue 1 / 2003 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100