Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2002-3pp.101-109

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 37, Issue 3 / 2002 | Next article >>
V. L. Leont'ev, "A variational-grid method involving orthogonal finite functions for solving problems of natural vibrations of 3D elastic solids," Mech. Solids. 37 (3), 101-109 (2002)
Year 2002 Volume 37 Number 3 Pages 101-109
Title A variational-grid method involving orthogonal finite functions for solving problems of natural vibrations of 3D elastic solids
Author(s) V. L. Leont'ev (Ulyanovsk)
Abstract In the present paper we consider an application of orthogonal finite functions in a combined variational-grid method of the mechanics of elastic deformable solids. The method possesses all advantages of combined methods, but is characterized by a reduced number of nodal unknowns due to the orthogonality of the basis functions. As compared with the Ritz method utilizing the Courant functions the proposed method has better computational characteristics, specifically, it provides the splitting of the global system of the grid equations into a number of subsystems and improves its conditionality. The method allows one to find approximations to the natural frequencies from below. In combination with the Ritz method, the proposed method gives two-sided estimates of the natural frequencies.
References
1.  I. Daubechies, "Orthonormal bases of compactly supported wavelets," Communs Pure and Appl. Math., Vol. 41, No. 7, pp. 909-996, 1988.
2.  V. L. Leont'ev, "On the generalization of the Courant functions," in Theory of Functions and Approximations. Proc. 7th Saratov Winter School, 1994. Volume 3 [in Russian], pp. 36-40, Izd-vo Saratov. Un-ta, Saratov, 1995.
3.  V. L. Leontjew and M. P. Ziplow, "Uber eine projektionen netzlichen Methode, die mit der Anwendung der miteinander orthogonalen ununterbrochen en Basisfunktionen mit dem endlichen Trager verknupfen ist," in Des. 1 Russisch-Deutschen Symp. Intelligente Informationstechnologien in der Entscheidigungfindung, S. 169-173, Moskau, 1995.
4.  V. L. Leont'ev and N. Ch. Lukashanets, "On the grid bases of orthogonal finite functions," Zh. Vychisl. Matematiki i Matem. Fiziki [Computational Mathematics and Mathematical Physics], Vol. 39, No. 7, pp. 1161-1171, 1999.
5.  G. Strang and G. Fix, Theory of the Finite Element Method [Russian translation], Mir, Moscow, 1977.
6.  V. L. Leont'ev, Finite Element Method in the Theory of Elasticity (Combined Variational Formulations) [in Russian], Izd-vo Srednevolzh. Nauch. Tsentra, Ulyanovsk, 1998.
7.  V. Ya. Arsenin, Methods of Mathematical Physics and Special Functions [in Russian], Nauka, Moscow, 1974.
Received 14 April 2000
<< Previous article | Volume 37, Issue 3 / 2002 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100