Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2001-3pp.65-73

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 36, Issue 3 / 2001 | Next article >>
S. A. Nazarov, "Damage tensor and damage measures. 3. Damage characteristics associated with an invariant integral," Mech. Solids. 36 (3), 65-73 (2001)
Year 2001 Volume 36 Number 3 Pages 65-73
Title Damage tensor and damage measures. 3. Damage characteristics associated with an invariant integral
Author(s) S. A. Nazarov (St. Petersburg)
Abstract For an elastic body weakened by a periodic family of defects, we introduce a fourth rank tensor of damage and the corresponding damage measures. The measures are associated with eigenvalues of a certain sheaf containing the tensor of damage. The tensor itself can be restored from the values of the invariant integral M over the outer surface of the body. The said characteristics are involved in asymptotic formulas for the increments of strains and the potential energy, the looseness of the body, etc. We define damage measures adapted to a fixed stress state and, in special cases, coinciding with the classical scalar damage function. A kinetic equation is obtained for damage accumulation.
References
1.  L. M. Kachanov, Basic Principles of Fracture Mechanics [in Russian], Nauka, Moscow, 1974.
2.  Yu. N. Rabotnov, Creep in Structural Elements [in Russian], Nauka, Moscow, 1966.
3.  A. A. Il'yushin and B. E. Pobedrya, Basic Principles of the Mathematical Theory of Thermal Viscoelasticity [in Russian], Nauka, Moscow, 1970.
4.  V. P. Tamuzh and A. Zh. Lagzdyn'sh, "A version of phenomenological fracture theory," Mekh. Polymer., No. 4, pp. 683-647, 1968.
5.  A. A. Vakulenko and M. L. Kachanov, "A continuum theory for media with cracks," Izv. AN SSSR. MTT [Mechanics of Solids], No. 4, pp. 159-166, 1971.
6.  V. I. Kondaurov and L. V. Nikitin, Theoretical Principles of Rheology of Geomaterials [in Russian], Nauka, Moscow, 1990.
7.  F. A. Leckie and D. R. Hayhurst, "Creep rupture of structures," Proc. Roy. Soc. London, Vol. 340, No. 1622, pp. 323-347, 1974.
8.  J. Janson and J. Hult, "Fracture mechanics and damage mechanics - a combined approach," J. Mech. Appl., Vol. 1, No. 1, pp. 69-76, 1977.
9.  J. K. Knowles and E. Sternberg, "On a class of conservation laws in linearized and finite elastostatics," Arch. Rat. Mech. Anal., Vol. 44, No. 3, pp. 187-211, 1972.
10.  B. Budianskii and J. R. Rice, "Conservation laws and energy-release rates," Trans. ASME J. Appl. Mech., Vol. 40, No. 1, pp. 201-203, 1973.
11.  S. A. Nazarov, "Damage tensor and damage measures. 2. Invariant integrals in bodies with disperse of defects", Izv. AN. MTT [Mechanics of Solids], No. 2, pp. 121-131, 2001.
12.  G. P. Cherepanov, "Crack growth in continuous media," PMM [Applied Mathematics and Mechanics], Vol. 31, No. 3, pp. 476-488, 1967.
13.  J. R. Rice, "A path independent integral and the approximate analysis of strain concentration by notches and cracks," Trans. ASME, Ser. E, J. Appl. Mech., Vol. 35, No. 2, pp. 379-386, 1968.
14.  K. Hellan, Introduction to Fracture Mechanics [Russian translation], Mir, Moscow, 1988.
15.  I. S. Zorin, A. B. Movchan, and S. A. Nazarov, "On the application of tensors of elastic capacity, polarization, and associated deformation," in Studies in Elasticity and Plasticity [in Russian], Vol. 16, pp. 75-91, Izd-vo LGU, Leningrad, 1990.
16.  S. A. Nazarov, "Damage tensor and damage measures; 1. Asymptotic analysis of anisotropic media with defects," Izv. AN. MTT [Mechanics of Solids], No. 3, pp. 113-124, 2000.
17.  N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media [in Russian], Nauka, Moscow, 1984.
18.  O. A. Oleinik, G. A. Yosifian, A. S. Shamaev, Mathematical Problems of the Theory of Strongly Inhomogeneous Elastic Media [in Russian], Izd-vo MGU, Moscow, 1990.
19.  R. Christensen, Introduction to the Mechanics of Composites [Russian translation], Mir, Moscow, 1982.
20.  B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd-vo MGU, Moscow, 1984.
21.  V. I. Smirnov, A Course in Higher Mathematics. Volume 3. Part. 1 [in Russian], Fizmatgiz, Moscow, 1958.
22.  I. S. Zorin, A. B. Movchan, and S. A. Nazarov, "On the application of the elastic polarization tensor in problems of fracture mechanics," Izv. AN SSSR. MTT [Mechanics of Solids], No. 6, pp. 128-134, 1988.
23.  P. C. Paris and F. Erdogan, "A critical analysis of crack propagation laws," Trans. ASME, Ser. D, J. Basic Eng., Vol. 85, No. 4, pp. 528-534, 1963.
24.  S. A. Nazarov, "Nonlinear effects in the deformation of composites with a regular system of small cracks," Mekh. Komposit. Mat., No. 6, pp. 1052-1059, 1988.
25.  G. M. Bartenev, Superstrong and Ultrastrong Inorganic Glass [in Russian], Stroiizdat, Moscow, 1974.
Received 16 November 1998
<< Previous article | Volume 36, Issue 3 / 2001 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100