Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2001-3pp.128-134

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 36, Issue 3 / 2001 | Next article >>
G. R. Gulgazaryan and L. G. Gulgazaryan, "Waves of Rayleigh type in a semi-infinite corrugated cylindrical shell," Mech. Solids. 36 (3), 128-134 (2001)
Year 2001 Volume 36 Number 3 Pages 128-134
Title Waves of Rayleigh type in a semi-infinite corrugated cylindrical shell
Author(s) G. R. Gulgazaryan (Erevan)
L. G. Gulgazaryan (Erevan)
Abstract For free vibrations of a corrugated semi-infinite cylindrical shell, we investigate propagation of plane waves of Rayleigh type decaying with the increase of the distance from the free edge along the generatrix. The case of a thin isotropic elastic shell with no flexural rigidity (membrane theory) is considered.
References
1.  R. A. Bagdasaryan, M. V. Belubekyan, and K. B. Kazaryan, "Waves of Rayleigh type in a semi-infinite cylindrical shell," in Wave Problems in Mechanics [in Russian], pp. 87-91, Nizhny Novgorod, 1992.
2.  G. R. Gulgazaryan and K. B. Kazaryan, "Waves of Rayleigh type in a semi-infinite closed circular cylindrical shell," Izv. NAN Resp. Armenia. Mekhanika, Vol. 50, No. 1, pp. 27-33, 1997.
3.  G. R. Gulgazaryan and L. G. Gulgazaryan, "Waves of Rayleigh type in a semi-infinite closed cylindrical shell with an arbitrary directrix," in Problems of Optimal Control, Stability, and Strength of Mechanical Systems [in Russian], Erevan, 1997.
4.  A. L. Goldenveiser, V. B. Lidskii, and P. E. Tovstik, Free Vibrations of Thin Elastic Shells [in Russian], Nauka, Moscow, 1979.
5.  A. G. Aslanyan and V. B. Lidskii, Distribution of Eigenvalues of Thin Elastic Shells [in Russian], Nauka, Moscow, 1974.
6.  F. Riesz and B. Sz.-Nagy, Lectures on Functional Analysis [Russian translation], Mir, Moscow, 1979.
7.  A. G. Aslanyan, "The relation between problems taking into account bending moments and membrane problems in the theory of thin elastic shells," Izv. AN SSSR. MTT [Mechanics of Solids], No. 5, pp. 118-124, 1977.
8.  G. R. Gulgazaryan, V. B. Lidskii, and G. I. Eskin, "Spectrum of the membrane problem in the case of a thin shell of arbitrary shape," Sibirsk. Mat. Zhurn., Vol. 4, No. 5, pp. 978-986, 1973.
9.  G. R. Gulgazaryan, "Approximate eigenfrequencies of a non-circular cylindrical shell," Izv. NAN Resp. Armenia, Mekhanika, Vol. 9, No. 1, pp. 61-70, 1996.
10.  E. T. Whittaker and G. N. Watson, A Course in Modern Analysis. Volume 1 [Russian translation], Fizmatgiz, Moscow, 1962.
Received 25 February 1999
<< Previous article | Volume 36, Issue 3 / 2001 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100