Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2001-2pp.138-147

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 36, Issue 2 / 2001 | Next article >>
E. Z. Korol', "On eigenfrequencies of small longitudinal and transverse vibrations of thin orthotropic circular plates," Mech. Solids. 36 (2), 138-147 (2001)
Year 2001 Volume 36 Number 2 Pages 138-147
Title On eigenfrequencies of small longitudinal and transverse vibrations of thin orthotropic circular plates
Author(s) E. Z. Korol' (Moscow)
Abstract Models of cylindrically orthotropic circular plates are widely used for the strength analysis of reflector antennas, laser devices, etc. Exact solutions for problems of axially symmetric bending of isotropic plates are given in [1-3]; solutions in the general case are obtained in works authored or co-authored by E. Z. Korol' [E. Z. Korol', "Boundary value problems of bending of cylindrically orthotropic circular plates on an elastic inhomogeneous foundation," in Book of Abstracts. 4th Intern. Conf. on Mechanics of Inhomogeneous Structures, pp. 165-166, Ternopol, 1995; E. I. Grigolyuk, E. Z. Korol', and M. E. Izmailova, "Bending of thin orthotropic circular plates on an elastic foundation," NII Mekhaniki MGU, Moscow, 1997 (Dep. VINITI 7 October 1997, No. 2997, B-97); E. Z. Korol', "Fundamental system of solutions of nth order differential equations of Bessel type and their applications in mechanics of solids. Part 1. Cylindrical functions of the nth order. Generalization of the Neumann-Weber-Schläfli formulas," NII Mekhaniki MGU, Moscow, 1998 (Dep. VINITI 3 April 1998, No. 990, B-98).], whereas no solutions are known for the problems of longitudinal and transverse vibrations of general type.
References
1.  A. N. Dinnik, Applications of Bessel Functions in Elasticity Problems. Part 1 [in Russian], Izd-vo NPI, Novocherkassk, 1913.
2.  B. G. Korenev, Introduction to the Theory of Bessel Functions [in Russian], Nauka, Moscow, 1971.
3.  E. B. Kuznetsov and V. I. Shalashilin, "Free vibrations and stability of circular plates subjected to axially symmetric heating," Izv. AN SSSR. MTT [Mechanics of Solids], No. 4, pp. 147-151, 1975.
4.  E. T. Whittaker and J. N. Watson, A Course of Modern Analysis. Volume 2 [Russian translation], Fizmatgiz, Moscow, 1955.
5.  H. Weber, "Über eine Darstellung willkurlicher Funktionen durch Bessel'sche Funktionen," Math. Ann., Bd. 6, S. 146-161, 1873.
6.  L. Schläfli, "Sullúso delle linee lungo quali il valore assoluto fi una funzione é costante [1973]," Annali Math., Vol. 6, pp. 1-19, 1873-1875.
7.  K. Neumann, Theorie der Bessel'schen Funktionen, Teubner, Leipzig, 1867.
8.  E. L. Lommel, "Studien über die Bessel'schen Funktionen," Teubner, Leipzig, 1868; Math. Ann., Vol. 1, pp. 624-635, 1870.
9.  N. Nilsen, Handbuch der Theorie der Cylinderfunktionen, Teubner, Leipzig, 1908.
10.  E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations [Russian translation], Izd-vo Inostr. Lit-ry, Moscow, 1958.
11.  E. L. Ince, Ordinary Differential Equations [Russian translation], Nauchn. Tekhn. Izd-vo Ukr., Kharkov, 1939.
Received 24 June 1998
<< Previous article | Volume 36, Issue 2 / 2001 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100