Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2001-2pp.104-113

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 36, Issue 2 / 2001 | Next article >>
S. A. Nazarov, "Damage tensor and damage measures. 2. Invariant integrals in bodies with disperse of defects," Mech. Solids. 36 (2), 104-113 (2001)
Year 2001 Volume 36 Number 2 Pages 104-113
Title Damage tensor and damage measures. 2. Invariant integrals in bodies with disperse of defects
Author(s) S. A. Nazarov (St. Petersburg)
Abstract The value of the familiar invariant integral M is calculated over the surface of a three-dimensional body with small defects (M=0 for a homogeneous body). The value of M is related to the potential energy increment due to damage. The defects under consideration are cavities (cracks) or elastic (rigid) inclusions. We study the case of finitely many defects of arbitrary distribution and the case of a defect cluster with a periodic structure.
References
1.  G. P. Cherepanov, "Propagation of cracks in continuous media," PMM [Applied Mathematics and Mechanics], Vol. 31, No. 3, pp. 476-488, 1967.
2.  J. R. Rice, "A path independent integral and the approximate analysis of strain concentration by notches and cracks," Trans. ASME. Ser. E.J. Appl. Mech., Vol. 35, No. 2, pp. 379-386, 1968.
3.  J. K. Knowles and E. Sternberg, "On a class of conservation laws in linearized and finite elastostatics," Arch. Rat. Mech. Anal., Vol. 44, No. 3, pp. 187-211, 1972.
4.  B. Budianskii and J. R. Rice, "Conservation laws and energy release rates," Trans. ASME, Eer. E. J. Appl. Mech., Vol. 40, No. 1, pp. 201-203, 1973.
5.  S. A. Nazarov, "Damage tensor and measures. I. Asymptotic analysis of anisotropic media with defects," Izv. AN. MTT [Mechanics of Solids], No. 3, pp. 113-124, 2000.
6.  S. A. Nazarov and O. P. Polyakova, "Weight functions and higher order invariant integrals," Izv. AN. MTT [Mechanics of Solids], No. 1, pp. 104-119, 1995.
7.  S. A. Nazarov, "Invariant integrals and Leonov-Panasyuk-Dugdale crack models," Zh. Prikl. Mekh. i Tekhn. Fiziki, Vol. 38, No. 5, pp. 147-155, 1997.
8.  S. A. Nazarov, "All coefficients of lower order stress singularities can be calculated by means of invariant integrals," Vestnik SPbGU, Ser. 1, Vol. 22, No. 4, pp. 95-99, 1996.
9.  I. S. Zorin, A. B. Movchan, and S. A. Nazarov, "On the application of the tensors of elastic capacity, polarization and associated deformation," in Studies in Elasticity and Plasticity [in Russian], Vol. 16, Izd-vo LGU, Leningrad, pp. 75-91, 1990.
10.  I. S. Zorin, A. B. Movchan, and S. A. Nazarov, "On applications of the elastic polarization tensor in problems of the mechanics of cracks," Izv. AN. MTT [Mechanics of Solids]old, No. 6, pp. 128-134, 1988.
11.  S. A. Nazarov, "Elastic capacity and polarization of defects in an elastic layer," Izv. AN. MTT [Mechanics of Solids]old, No. 5, pp. 57-65, 1990.
12.  S. A. Nazarov, "Weight functions and invariant integrals," in Computational Mechanics of Solids [in Russian], Vol. 1, pp. 17-31, 1990.
13.  N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media. Mathematical Problems of the Mechanics of Composites [in Russian], Nauka, Moscow, 1984.
14.  E. Sanchez-Palencia, Inhomogeneous Media and Vibration Theory [Russian translation], Mir, Moscow, 1984.
15.  B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd-vo MGU, Moscow, 1984.
16.  S. A. Nazarov, "A general homogenization scheme for self-adjoint elliptic systems in multi-dimensional and thin domains," Algebra i Analiz, Vol. 7, No. 5, pp. 1-92, 1995.
17.  S. A. Nazarov, "Nonlinear effects in deformation of composites with a regular array of microcracks," Mekh. Kompozit. Materialov, No. 6, pp. 1052-1059, 1988.
18.  V. V. Bolotin, "Stochastic models of crack initiation and development," in Nonlinear Models in Mechanics of Solids [in Russian], Nauka, Moscow, pp. 166-179, 1984.
19.  N. B. Romalis and B. P. Tamuzh, Fracture of Structurally Inhomogeneous Bodies [in Russian], Zinatne, Riga, 1989.
20.  S. K. Kanaun and V. M. Levin, Effective Field Methods in the Mechanics of Composites" [in Russian], Izd-vo Petrozavodsk. Un-ta, Petrozavodsk, 1989.
21.  A. B. Movchan and S. A. Nazarov, "Cracks in Composite Materials," Parts 1 and 2, Mekh. Kompozit. Materialov, No. 5, pp. 842-851; No. 6, pp. 1038-1046, 1990.
22.  A. M. Il'in, Matched Asymptotic Expansions of Solutions of Boundary Value Problems [in Russian], Nauka, Moscow, 1989.
23.  W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, `Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten," Akademischer Verlag, Berlin, 1990.
24.  S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994.
Received 16 November 1998
<< Previous article | Volume 36, Issue 2 / 2001 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100