1. | Ariga К., Kunitake Т. Supramolecular Chemistry - Fundamentals and Applications. Berlin: Springer, 2006. 208 с. |
2. | Buehler M.J. Atomistic Modeling of Materials Failure. N.Y.: Springer, 2008. 488 с. |
3. | Liu W.K., Karpov E.G., Park H.S. Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. Chichester: Wiley, 2006. 460 с. |
4. | Rafii-Tabar H. Computational Physics of Carbon Nanotubes. Cambridge: Cambridge Univ. Press, 2008. 487 c. |
5. | Yakobson В.I., Couchman L.S. Carbon Nanotubes: Supramolecular Mechanics // Dekker Encyclopedia of Nanoscience and Nanotechnology. N.Y.: Marcel Dekker, 2004. P. 587-601. |
6. | Zhang J.Z., Wang Z.L., Liu J., Chen S., Liu G.Y. Self-Assembled Nanostructures. N.Y.: KluwerAcad. Publ., 2004. 316 c. |
7. | Arroyo M., Belytschko T. Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes // Int. J. Numer. Meth. Engng. 2004. V. 59. № 3. P. 419-456. |
8. | Batra B.C., Sears A. Continuum model of multi-walled carbon nanotubes // Int. J. Solids Structures. 2007. V. 44. P. 7577-7596. |
9. | Hu N., Nunoya K., Pan D., Okabe Т., Fukanaga H. Prediction of buckling characteristics of carbon nanotubes // Int. J. Solids Structures. 2007. V. 44. № 20. P. 6535-6550. |
10. | Kalamkarov A.L., Georgiades A.V., Rokkam S.K., Veedu V.P., Ghasemi-Nejhad M.N. Analytical and numerical techniques to predict carbon nanotubes properties // Int. J. Solids Structures. 2006. V. 43. № 22/23. P. 6832-6854. |
11. | Leung A.Y.T., Guo X., He X.Q. Postbuckling of carbon nanotubes by atomic-scale finite element// J. Appl. Phys. 2006. V. 99. P. 124308. |
12. | Saito R., Matsuo R., Kimura Т., Dresselhaus G., Dresselhaus M.S. Anomalous potential barrier of double-wall carbon nanotube // Chem. Phys. Lett. 2001. V. 348. № 3. P. 187-193. |
13. | Sears A., Batra R.C. Buckling of multiwalled carbon nanotubes under axial compression// Phys. Rev. B. 2006. V. 73. № 8. P. 085410. |
14. | Shen H.S., Zhang C.L. Postbuckling prediction of axially loaded double-walled carbon nanotubes with temperature dependent properties and initial defects // Phys. Rev. B. 2006. V. 74. № 3. P. 035410. |
15. | Zhang Y.Y., Tan V.B.C., Wang C.M. Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes // Carbon. 2007. V. 45. № 3. P. 514-523. |
16. | Zhang H.W., Wang L., Wang J.B. Computer simulation of buckling behavior of double-walled carbon nanotubes with abnormal interlayer distances // Comput. Mater. Sci. 2007. V. 39. № 3. P. 664-672. |
17. | Zhang S., Mielke S.L., Khare R., Troya D., Ruoff R.S., Schatz G.C., Belytschko T. Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations // Phys. Rev. B. 2005. V. 71. № 11. P. 115403. |
18. | Buehler M.J., Kong Y, Gao H., Huang Y. Self-folding and unfolding of carbon nanotubes // Trans. ASME. J. Eng. Mater, and Technol. 2006. V. 128. № 3. P. 3-10. |
19. | Arroyo M., Belytschko Т. A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes // Mechanics of Materials. 2003. V. 35. № 3. P. 193-215. |
20. | Gao G., Cagin Т., Goddard III W.A. Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes // Nanotechnology. 1998. V. 9. № 3. P. 184-191. |
21. | Liu В., Jiang H., Huang Y., Qu S., Yu M.-F. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes // Phys. Rev. B. 2005. V. 72. P. 035435. |
22. | Frankland S.J.V., Harik V.M., Odegard G.M., Brenner D. W., Gates T.S. The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation // Composites Sci. and Technol. 2003. V. 63. P. 1655-1661. |
23. | Гольдштейн Р.В., Ченцов А.В. Дискретно-континуальная модель нанотрубки // Изв. РАН. МТТ. 2005. № 4. С. 57-74. |
24. | Гольдштейн Р.В., Ченцов А.В., Кадушников P.M., Штуркин Н.А. Методы и метрологическое обеспечение механических испытаний нано- и микромасштабных объектов, материалов и изделий нанотехнологий // Российские нанотехнологии. 2008. Т. 3. № 1-2. С. 114-124. |
25. | Ни N., Fukanaga H., Lu C., Kameyama M., Yan В. Prediction of elastic properties of carbon nanotube reinforced composites // Proc. Roy. Soc. London. Ser. A. 2005. V. 461. № 2058. P. 1685-1710. |
26. | Li C.Y., Chou T.W. Modeling of carbon nanotubes and their composites // Nanomechanics of Materials and Structures. Berlin: Springer, 2006. P. 55-65. |
27. | Odegard G.M., Gates T.S., Nicholson L.M., Wise E. Equivalent-continuum modeling of nano-structured materials//Composites Sci. andTechnol. 2002. V. 62. № 14. P. 1869-1880. |
28. | Wang Q. Torsional instability of carbon nanotubes encapsulating C60 fullerens // Carbon. 2009. V. 47. № 2. P. 507-512. |
29. | Chopra N.G., Benedict L.X., Crespi V.H., Cohen M.L., Louie S.G., Zettl A. Fully collapsed carbon nanotubes // Nature. 1995. V. 377. P. 135-138. |
30. | Кривцов A.M. Деформация и разрушение твердых тел с микроструктурой. М.: Физматлит, 2007. 304 с. |
31. | Gates T.S., Odegard G.M., Frankland S.J.V., Clancy T.C. Computational materials: multi-scale modeling and simulation of nanostructured materials // Composites Sci. and Technol. 2005. V. 65. № 15/16. P. 2416-2434. |
32. | Korobeynikov S.N. Nonlinear equations of deformation of atomic lattices // Arch. Mech. 2005. V. 57. № 6. P. 457-475. |
33. | Аннин Б.Д., Коробейников С.Н., Бабичев А.В. Компьютерное моделирование выпучивания нанотрубки при кручении // Сиб. журн. индустр. математики. 2008. Т. 11. № 1. С. 3-22. |
34. | Korobeinikov S.N. The numerical solution of nonlinear problems on deformation and buckling of atomic lattices // Int. J. Fracture. 2004. V. 128. № 1. P. 315-323. |
35. | Korobeynikov S.N., Babichev A.V. Numerical simulation of dynamic deformation and buckling of nanostructures // CD ICF Interquadrennial conference full papers. M.: Institute for Problems in Mechanics, 2007. |
36. | Коробейников С.Н., Бабичев А.В. Выпучивание нанотрубки при внезапном приложении постоянной осевой нагрузки // Математическое моделирование систем и процессов. Пермь: Изд-во ПГТУ, 2008. С. 43-54. |
37. | Liew K.M., Wong C.H., Tan M.J. Tensile and compressive properties of carbon nanotube bundles // Acta Materialia. 2006. V. 54. № 1. P. 225-231. |
38. | Zhang C.-L., Shen H.-S. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation // Carbon. 2006. V. 44. № 13. P. 2608-2616. |
39. | Arroyo M., Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule // Phys. Rev. B. 2004. V. 69. P. 115415. |
40. | Liu В., Huang Y., Jiang H., Qu S., Hwang K.C. The atomic-scale finite element method // Comput. Methods Appl. Mech. Engr. 2004. V. 193. № 17-20. P. 1849-1864. |
41. | Kasti N.A. Zigzag carbon nanotubes - Molecular/structural mechanics and finite element method // Int. J. Solids Structures. 2007. V. 44. P. 6914-6929. |
42. | Leung A.Y.Т., Guo X., He X.Q., Kitipornchai S. A continuum model for zigzag single-walled carbon nanotubes // Appl. Phys. Letters. 2005. V. 86. P. 083110. |
43. | Li C.Y., Chou T.W. A structural mechanics approach for the analysis of carbon nanotubes // Int. J. Solids Structures. 2003. V. 40. № 10. P. 2487-2499. |
44. | Wang Y., Sun C, Sun X., Hinkiey J., Odegard G.M., Gates T.S. 2-D nano-scale finite element analysis of a polymer field // Composites Sci. and Technol. 2003. V. 63. P. 1581-1590. |
45. | Zhang H.W., Wang L., Wang J.В., Ye H.F. Parametric variational principle and quadratic programming method for van der Waals force simulation of parallel and cross nanotubes // Int. J. Solids Structures. 2007. V. 44. № 9. P. 2783-2801. |
46. | Zhang H.W., Yao Z., Wang J.В., Zhong W.X. Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method // Int. J. Solids Structures. 2007. V. 44. № 20. P. 6428-6449. |
47. | MARC Users Guide. Vol. C: Program Input. Santa Ana: MSC.Software Corporation, 2007. 2068 p. |
48. | Girifalco L.A., Hodak M., Lee R.S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential // Phys. Rev. B. 2000. V. 62. № 19. P. 13104-13110. |
49. | Кравчук А.С. О моделях и решении задач механики наноконтакта // Математическое моделирование систем и процессов. Пермь: Изд-во ПГТУ, 2007. С. 123-141. |
50. | Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Сиб. отд-ние РАН, 2000. 262 с. |
51. | Korobeinikov S.N., Agapov V.P., Bondarenko M.L, Soldatkin A.N. The general purpose nonlinear finite element structural analysis program PIONER // Proc. Int. Conf. Numerical Methods and Applications. Sofia: Publ. House of the Bulgarian Acad, of Sci., 1989. P. 228-233. |
52. | Sinnott S.B., Shenderova O.A., White С.Т., Brenner D.W. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations // Carbon. 1998. V. 36. № 1-2. P. 1-9. |
53. | PATRAN Users Guide. Santa Ana: MSC.Software Corporation, 2007. 1759 p. |
54. | Бабичев А.В. Автоматизация построения моделей и визуализация результатов численного моделирования деформирования наноструктур // Вычисл. механика сплошной среды. 2008. Т. 1. № 4. С. 21-27. |
55. | Раков Э.Г. Нанотрубки и фуллерены. М.: Логос, 2006. 374 с. |
56. | Belytschko Т., Xiao S.P., Schatz G.C., Ruoff R.S. Atomistic simulations of nanotube fracture // Phys. Rev. B. 2002. V. 65. P. 235430. |