Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2024-3pp.1214-1225

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 59, Issue 3 / 2024 | Next article >>
G.M. Sevastyanov, "Elastic–Plastic Analysis of a Circular Pipe Turned Inside Out," Mech. Solids. 59 (3), 1214-1225 (2024)
Year 2024 Volume 59 Number 3 Pages 1214-1225
DOI 10.1134/S0025654423602380
Title Elastic–Plastic Analysis of a Circular Pipe Turned Inside Out
Author(s) G.M. Sevastyanov (Institute of Machinery and Metallurgy, KhFRC FEB RAS, Komsomolsk-on-Amur, 681005 Russia, akela.86@mail.ru)
Abstract The article presents an analytical solution for the problem of a circular pipe turning inside out in a rigid gasket. Formulas for the magnitude of the radial stress, which is responsible for the adhesion between the pipe and the gasket, have been obtained. The solution is obtained for an arbitrary incompressible hyperelastic material with a hyperelastic potential that depends only on the first invariant of the left Cauchy–Green deformation tensor (various generalizations of the neo-Hookean solid) or on the second invariant of the logarithmic Hencky strain tensor (various generalizations of the incompressible Hencky material). The solution considers the occurrence of plastic flow in areas adjacent to the lateral surfaces of the pipe. Both ideally plastic and isotropically hardening materials of a general type are considered. For the latter, a solution scheme is given; in the particular case of a linearly hardening material, a closed-form solution is obtained. For the perfect plasticity model, a closed-form solution was obtained for the neo-Hookean solid, for an incompressible Hencky material, and for the Gent material.
Keywords hyperelasticity, plasticity, pipe eversion, Gent model
Received 19 June 2023Revised 17 July 2023Accepted 12 November 2023
Link to Fulltext
<< Previous article | Volume 59, Issue 3 / 2024 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100