Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-6pp.691-697

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
P.P. Tikhomirova, A.V. Shatina, and E.V. Sherstnev, "Tidal Deformations of a Viscoelastic Planet," Mech. Solids. 53 (6), 691-697 (2018)
Year 2018 Volume 53 Number 6 Pages 691-697
DOI 10.3103/S0025654418060109
Title Tidal Deformations of a Viscoelastic Planet
Author(s) P.P. Tikhomirova ("MIREA - Russian Technological University," pr. Vernadskogo 78, Moscow, 119454 Russia)
A.V. Shatina ("MIREA - Russian Technological University," pr. Vernadskogo 78, Moscow, 119454 Russia, shatina_av@mail.ru)
E.V. Sherstnev ("MIREA - Russian Technological University," pr. Vernadskogo 78, Moscow, 119454 Russia)
Abstract This article studies the tidal deformations of a viscoelastic planet in the gravitational field of the attracting center and satellite. The planet is modeled either as a body consisting of a solid core and a viscoelastic shell rigidly attached to it, or as a uniform isotropic viscoelastic ball. The attracting center and the satellite are modeled by material points. The function describing the dependence of the height of the tidal hump at a fixed point on the planet's surface on time has been found. Graphs of this function were constructed for the planet "Earth" moving in the gravitational field of the Sun and the Moon. To obtain the result, the method of separation of movements developed by V.G. Vilke for mechanical systems with an infinite number of degrees of freedom is used.
Keywords tides, gravity, tidal deformations, viscoelastic planet
References
1.  V.G. Vil'ke and A.V. Shatina, "Translational-Rotational Motion of a Viscoelastic Sphere in Gravitational Field of an Attracting Center and a Satellite," Kosm. Issled. 42 (1), 95-106 (2004) [Cosm. Res. (Engl. Transl.) 42 (1), 91-102 (2004)].
2.  V.G. Vil'ke, Analytical Mechanics for Systems with Infinite Number of Degrees of Freedom. (Izd-vo MGU, Moscow, 1997) Part 1-2 [in Russian].
3.  A.V. Shatina, "Deformations of a Planet Containing a Moving Internal Core in the Gravitational Field of a Central Body and a Satellite," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 1, 3-12 (2005) [Mech. Sol. (Engl. Transl.) Mech. Sol. 40 (1), 1-7 (2005)].
4.  A.V. Shatina and E.V. Sherstnyov, "Satellite Motion in the Gravitational Field of a Viscoelastic Planet with a Core," Kosm. Issled. 53 (2), 173-180 (2015) [Cosm. Res. (Engl. Transl.) 53 (2), 163-170 (2015)].
5.  L.S. Leibenzon, A Brief Course of the Theory of Elasticity (Gostekhizdat, Moscow, 1942) [in Russian].
6.  V.G. Vil'ke, Theoretical Mechanics (Lan', St. Petersburg, 2003) [in Russian].
7.  P.G. Kulikovskii, Handbook of Amateur Astronomer (LIBROKOM, Moscow, 2009) [in Russian].
8.  C.D. Murray and S.F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 2000; Fizmatlit, Moscow, 2010).
9.  V.G. Surdin, The Fifth Force (Izd-vo MCNMO, Moscow, 2002) [in Russian].
Received 10 February 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100