Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-6pp.675-684

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
V.S. Zarubin and E.S. Sergeeva, "Effects of Porosity of a Composite Reinforced with Nanostructured Inclusions on its Thermoelastic Characteristics," Mech. Solids. 53 (6), 675-684 (2018)
Year 2018 Volume 53 Number 6 Pages 675-684
DOI 10.3103/S0025654418060080
Title Effects of Porosity of a Composite Reinforced with Nanostructured Inclusions on its Thermoelastic Characteristics
Author(s) V.S. Zarubin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia)
E.S. Sergeeva (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, sergeeva.e.s@outlook.com)
Abstract A mathematical model was constructed describing the thermomechanical interaction of particles of the composite matrix and reinforcing elements (randomly oriented anisotropic single-walled carbon nanotubes) with an isotropic medium with the desired thermoelastic characteristics. This model was used to find the self-consistency of the thermoelastic characteristics of the composite, taking into account the porosity of its matrix, which are compared with two-sided estimates derived from the dual variational formulation of the thermoelasticity problem. The presented relations make it possible to estimate the effect of the porosity of the matrix of the composite under consideration on its thermoelastic characteristics.
Keywords composite structure model, thermoelastic characteristics, self-consistent method, two-sided estimates, carbon nanotubes, porosity
References
1.  J. Bieksha, "Utilization of Composite Materials in Defense and Aerospace Industries," Vestn. Elektron., No. 1, 24-27 (2014).
2.  Reference Book in Composite Materials, Ed. by J. Lubin (Mashinostroenie, Moscow, 1988) [in Russian].
3.  V.V. Vasiliev, Mechanics of Structures Made of Composite Materials (Mashinostroenie, Moscow, 1988) [in Russian].
4.  R.A. Roscoe, "Isotropic Composites with Elastic and Viscoelastic Phases: General Bounds for the Moduli and Solutions for Spetial Geometries," Rheol. Acta. 12, 404-411.
5.  I.A. Kunin, Elastic Media with Microstructures (Springer-Verlag, 1983).
6.  L.J. Walpole, "On the Overall Elastic Moduli of Composite Materials," J. Mech. Phys. Sol. 17, 235-251 (1969).
7.  T. Mori and K. Tanaka, "Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metall. 21, 571-574 (1973).
8.  K.B. Ustinov and R.V. Goldstein, "On Application of Classical Eshelby Approach to Calculating Effective Elastic Moduli of Dispersed Composites," Int. J. Fract. 147, 55-66 (2007).
9.  R.L. Salganik, "Mechanics of Bodies with Many Cracks," Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 4, 149-158 (1973) [Mech. Sol. (Engl. Transl.) 8 (4), 135-143 (1973)].
10.  B. Budiansky and R.J. O'Connell, "Elastic Moduli of a Cracked Solid," Int. J. Sol. Struct. 12, 81-97 (1976).
11.  P. Palermo, "Structural Ceramic Nanocomposites: A Review of Properties and Powders' Synthesis Methods," Nanomat. 5 (2), 656-696 (2015).
12.  R. Casati and M. Vedani, "Metal Matrix Composites Reinforced by Nano-Particles-A Review," Metals 4, 65-83 (2014).
13.  O.L. Blakslee, D.G. Proctor, E.J. Seldin, et al., "Elastic Constants of Compression-an-Nealed Pyrolytic Graphite," J. Appl. Phys. 41 (8), 3373-3382 (1970).
14.  J.D. Eshelby, Continual Theory of Dislocations (Inostr. Lit-ra, Moscow, 1963) [in Russian].
15.  T.D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Nauka, Moscow, 1977) [in Russian].
16.  V.S. Zarubin and O.V. Novozhilova, "Estimates of Thermoelastic Characteristics of Composites Reinforced by Short Anisotropic Fibers," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 3, 6-19 (2016) [Mech. Sol. (Engl. Transl.) 51 (3), 245-255 (2016)].
17.  V.S. Zarubin and E.S. Sergeeva, "Study of the Connection of Elastic Characteristics of a Single-Layer Carbon Nanotube and Graphene," Vest. MGTU Baumana Ser. Estestv. Nauki, No. 1, 100-110 (2016).
18.  H. Jiang, B. Liu, Y. Huang, K.C. Hwang, "Thermal Expansion of Single Wall Carbon Nanotubes," J. Engng Mat. Tech. 126, 265-270 (2004).
19.  V.S. Zarubin and G.N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izd-vo Bauman MGTU, Moscow, 2008) [in Russian].
20.  N.N. Golovin, V.S. Zarubin, and G.N. Kuvyrkin, "Mixture Models of Composite Mechanics, Pt. 1: Thermomechanics and Thermoelasticity of Multicomposite Mixture," Vest. MGTU Baumana. Ser. Estestv. Nauki, No. 3, 36-49 (2009).
21.  I.E. Berinskii and A.M. Krivtsov, "On Using Many-Particle Interatomic Potentials to Compute Elastic Properties of Graphene and Diamond," Izv. Akad. Nauk. Mekh. Tv. Tela, No. 6, 60-85 (2010) [Mech. Sol. (Engl. Transl.) 45 (63), 815-834 (2010)].
22.  I.S. Grigoriev and E.Z. Melikhov (Editors), Physical Quantities, Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].
Received 20 February 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 6 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100