  |   | Mechanics of Solids A Journal of Russian Academy of Sciences |   | Founded 
in January 1966 
Issued 6 times a year 
Print ISSN 0025-6544 Online ISSN 1934-7936 |   
 
 
Archive of Issues
| Total articles in the database: |   | 13288 |  
| In Russian (Èçâ. ÐÀÍ. ÌÒÒ): |   | 8164
  |  
| In English (Mech. Solids): |   | 5124 |  
  |  
 
| << Previous article | Volume 53, Issue 3 / 2018 | Next article >> |  
| I.Yu. Savelieva,  "Influence of Medium Nonlocality on Distribution of Temperature and Stresses in Elastic Body under Pulsed Heating," Mech. Solids. 53 (3), 277-283 (2018) |  
| Year | 
2018 | 
Volume | 
53 | 
Number | 
3 | 
Pages | 
277-283 | 
 
| DOI | 
10.3103/S0025654418070063 |  
| Title | 
Influence of Medium Nonlocality on Distribution of Temperature and Stresses in Elastic Body under Pulsed Heating |  
| Author(s) | 
I.Yu. Savelieva (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, str. 1, Moscow, 105005 Russia, inga.savelyeva@gmail.com) |  
| Abstract | 
An approach to constructing mathematical models of thermomechanical processes in a deformable body is considered by the rational thermodynamic relations of irreversible processes for a continuous medium with intrinsicstate parameters as well as the Eringen model for nonlocal theory of elasticity. The models take into account the effects of temporal and spatial nonlocality of a continuous medium. The temperature and stresses for the problem of pulsed heating in one-dimensional case are calculated. |  
| Keywords | 
thermomechanics, nonlocal deformation, thermal conductivity, dynamic stresses, pulsed heating |  
| References | 
| 1.   | R. A. Andrievskii, and A. V. Ragulya, Nanostructural Materials
(Akademiya, Moscow, 2005) [in Russian]. |  
| 2.   | A. N. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian]. |  
| 3.   | H. Kobayashi, Introduction to Nanotechnology (BINOM, Moscow, 2005) [in Russian]. |  
| 4.   | Ch. Poole Jr., and F. J. Owens, Introduction to Nanotechnology (Wiley, 2003; Tekhnosfera, Moscow, 2006). |  
| 5.   | R. W. Kelsall (Editor), Nanoscale Science and Technology (Wiley, 2005). |  
| 6.   | J. Peddieson, G. R. Buchanon, and R. P. McNitt, "Application of Nonlocal Continuum Medium Models to
Nanotechnology," Int. J. Engng Sci.
41, 305-312 (2003). |  
| 7.   | A.  M.  Krivtsov, Deformation and Failure of Rigid Bodies with Microstructure (Fizmatlit, Moscow,
2007) [in Russian]. |  
| 8.   | I. A.  Kunin, Theory of Elastic Media with Microstructure. Nonlocal Theory of Elasticity (Nauka,
Moscow, 1975) [in Russian]. |  
| 9.   | M. Onemi, S. Iwasimidzu, K.  Genka, et al., Introduction to Micromechanics (Metallurgiya, Moscow,
1987) [in Russian]. |  
| 10.   | G. N. Kuvyrkin, A. V. Zhuravskii, and I. Yu. Savel'eva, "Mathematical Modeling of Chemical Vapor Deposition
of Material on a Curvilinear Surface" J. Engng Phys. Therm. 89 (6), 1374-1379 (2016). |  
| 11.   | V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics
(Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian]. |  
| 12.   | V. S. Zarubin and G. N. Kuvyrkin, "Mathematical Modeling of Thermomechanical Processes under Intense Thermal
Effect," Teplofiz. Vysokikh Temp. 41 (2), 300-309 (2003) [High Tempr. (Engl. Transl.)
41 (2), 257-265 (2003)]. |  
| 13.   | V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Mathematical Model of a Nonlocal Medium with Internal
State Parameters," Inzh.-Fiz. Zh. 86 (4), 768-773 (2013)
[J. Engng Phys. Thermophys. (Engl. Transl.) 86 (4), 820-826 (2013)]. |  
| 14.   | G. N. Kuvyrkin and I. Yu. Savelieva, "Mathematical Model of Heat Conduction of New Structural Materials,"
Vestnik MGTU im. Baumana. Ser. Estestv. Nauki, No 3, 72-85 (2010). |  
| 15.   | A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York-Berlin-Heidelberg, 2002). |  
| 16.   | A. A. Pisano, and P. Fuschi, "Closed Form Solution for a Nonlocal Elastic Bar in Tension [J]," Int. J.
Solids Struct. 40 (2), 13-23 (2003). |  
| 17.   | C. Polizzotto, "Nonlocal Elasticity and Related Variational Principles," Int. J. Solids Struct. 38 (2), 7359-7380 (2001). |  
| 18.   | G. N. Kuvyrkin, and I. Y. Savelieva, "Thermomechanical Model of Nonlocal Deformation of a Solid," Izv. Akad.
Nauk. Mekh. Tverd. Tela, No. 3, 20-27 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 256-262 (2016)]. |  
 
 |  
| Received | 
09 July 2016 |  
| Link to Fulltext | 
 |  
| << Previous article | Volume 53, Issue 3 / 2018 | Next article >> |  
 
 |  
 If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
  |   
 
 |