Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-3pp.277-283

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
I.Yu. Savelieva, "Influence of Medium Nonlocality on Distribution of Temperature and Stresses in Elastic Body under Pulsed Heating," Mech. Solids. 53 (3), 277-283 (2018)
Year 2018 Volume 53 Number 3 Pages 277-283
DOI 10.3103/S0025654418070063
Title Influence of Medium Nonlocality on Distribution of Temperature and Stresses in Elastic Body under Pulsed Heating
Author(s) I.Yu. Savelieva (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, str. 1, Moscow, 105005 Russia, inga.savelyeva@gmail.com)
Abstract An approach to constructing mathematical models of thermomechanical processes in a deformable body is considered by the rational thermodynamic relations of irreversible processes for a continuous medium with intrinsicstate parameters as well as the Eringen model for nonlocal theory of elasticity. The models take into account the effects of temporal and spatial nonlocality of a continuous medium. The temperature and stresses for the problem of pulsed heating in one-dimensional case are calculated.
Keywords thermomechanics, nonlocal deformation, thermal conductivity, dynamic stresses, pulsed heating
References
1.  R. A. Andrievskii, and A. V. Ragulya, Nanostructural Materials (Akademiya, Moscow, 2005) [in Russian].
2.  A. N. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].
3.  H. Kobayashi, Introduction to Nanotechnology (BINOM, Moscow, 2005) [in Russian].
4.  Ch. Poole Jr., and F. J. Owens, Introduction to Nanotechnology (Wiley, 2003; Tekhnosfera, Moscow, 2006).
5.  R. W. Kelsall (Editor), Nanoscale Science and Technology (Wiley, 2005).
6.  J. Peddieson, G. R. Buchanon, and R. P. McNitt, "Application of Nonlocal Continuum Medium Models to Nanotechnology," Int. J. Engng Sci. 41, 305-312 (2003).
7.  A.  M.  Krivtsov, Deformation and Failure of Rigid Bodies with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
8.  I. A.  Kunin, Theory of Elastic Media with Microstructure. Nonlocal Theory of Elasticity (Nauka, Moscow, 1975) [in Russian].
9.  M. Onemi, S. Iwasimidzu, K.  Genka, et al., Introduction to Micromechanics (Metallurgiya, Moscow, 1987) [in Russian].
10.  G. N. Kuvyrkin, A. V. Zhuravskii, and I. Yu. Savel'eva, "Mathematical Modeling of Chemical Vapor Deposition of Material on a Curvilinear Surface" J. Engng Phys. Therm. 89 (6), 1374-1379 (2016).
11.  V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian].
12.  V. S. Zarubin and G. N. Kuvyrkin, "Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect," Teplofiz. Vysokikh Temp. 41 (2), 300-309 (2003) [High Tempr. (Engl. Transl.) 41 (2), 257-265 (2003)].
13.  V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Mathematical Model of a Nonlocal Medium with Internal State Parameters," Inzh.-Fiz. Zh. 86 (4), 768-773 (2013) [J. Engng Phys. Thermophys. (Engl. Transl.) 86 (4), 820-826 (2013)].
14.  G. N. Kuvyrkin and I. Yu. Savelieva, "Mathematical Model of Heat Conduction of New Structural Materials," Vestnik MGTU im. Baumana. Ser. Estestv. Nauki, No 3, 72-85 (2010).
15.  A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York-Berlin-Heidelberg, 2002).
16.  A. A. Pisano, and P. Fuschi, "Closed Form Solution for a Nonlocal Elastic Bar in Tension [J]," Int. J. Solids Struct. 40 (2), 13-23 (2003).
17.  C. Polizzotto, "Nonlocal Elasticity and Related Variational Principles," Int. J. Solids Struct. 38 (2), 7359-7380 (2001).
18.  G. N. Kuvyrkin, and I. Y. Savelieva, "Thermomechanical Model of Nonlocal Deformation of a Solid," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 20-27 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 256-262 (2016)].
Received 09 July 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 3 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100