Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-2pp.164-176

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 2 / 2018 | Next article >>
E.Ya. Denisyuk, "Mechanics and Thermodynamics of Deformation for a Liquid-Sarurated Elastic Materials in the Approximation of Small Deformations," Mech. Solids. 53 (2), 164-176 (2018)
Year 2018 Volume 53 Number 2 Pages 164-176
DOI 10.3103/S0025654418020073
Title Mechanics and Thermodynamics of Deformation for a Liquid-Sarurated Elastic Materials in the Approximation of Small Deformations
Author(s) E.Ya. Denisyuk (Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, denisyuk@icmm.ru)
Abstract The article deals with a linear theory describing the elastic properties and thermodynamics of deformation for a mixture, which is an elastic material and a liquid dissolved in it, in the approximation of small deformations. Theory's equations are obtained by the linearization of the corresponding equations for the nonlinear theory. In the framework of the linear theory, the formulation of the basic problems for the mechanics of mixture is considered. Their connection with the classical problems of the theory of elasticity and thermoelasticity is shown. The general theory is exemplified by the description of the elastic properties and thermodynamics for the deformation of polymer gels in a solvent medium.
Keywords theory of mixture, swelling, thermodynamic equilibrium, polymer gels, solvents, osmotic stress tensor
References
1.  L. I. Valuev, T. A. Valueva, I. L. Valuev, and N. A. Plate, Polymeric Systems for Controlled Release of Bioactive Compounds," Uspekhi Biol. Khim. 43, 307-328 (2003).
2.  I. Y. Galaev and B. Mattiasson, "'Smart' Polymers and What They Could do in Biotechnology," Trends Biotechnol. 17, 335-340 (1999).
3.  M. Nishino, J. Gong, and Y. Osada, "Polymer Gels as a Chemical Valve," Bioseparation 7, 269-280 (1999).
4.  N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, "Hydrogels in Biology and Medicine: from Molecular Principles to Bionanotechnology," Adv. Mater. 18 (11), 1345-1360 (2006).
5.  T. R. Hoare and D. S. Kohane, "Hydrogels in Drug Delivery: Progress and Challenges," Polymer 49 (8), 1993-2007 (2008).
6.  J. Kopecek, "Hydrogels: from Soft Contact Lenses and Implants to Self-Assembled Nanomaterials," J. Polym. Sci. A. Polym. Chem. 47, 5929-5946 (2009).
7.  K. Deligkaris, T. S. Tadele, W. Olthuis, and A. Berg, "Hydrogel-Based Devices for Biomedical Applications," Sensor Actuat. B 147, 765-774 (2010).
8.  P. Calvert, "Hydrogels for Soft Machines," Adv. Mater. 21 (7), 743-756 (2009).
9.  M. Otake, Electroactive Polymer Gel Robots (Springer, Berlin, 2010).
10.  K. K. Westbrook and H. J. Qi, "Actuator Designs Using Environmentally Responsive Hydrogels," J. Intell. Mater. Syst. Struct. 19 (5), 597-607 (2008).
11.  K. Y. Lee and D. J. Mooney, "Hydrogels for Tissue Engineering," Chem. Rev. 101 (7), 1869-1880 (2001).
12.  P. J. Flory and J. Rehner, "Statistical Mechanics of Cross-Linked Polymer Networks," J. Chem. Phys. 11, 512-526 (1943).
13.  K. R. Rajagopal and L. Tao, Mechanics of mixtures (World Scientific Publishing, 1995).
14.  C. Truesdell and R. Toupin, "The Classical Field Theories," in Handbuch der Phisik, Vol. III. Ed. by S. Flugge (Springer-Verlag, Berlin, 1960), pp. 226-793.
15.  E. Ya. Denisyuk and Tereshatov V.V., "Theory of the Mechanodiffusion Transfer of Multicomponent Liquids in Cross-Linked Elastomers," Zh. Prikl. Mekh. Tekh. Fiz. 38 (6), 113-129 (1997) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 38 (6), 913-927 (1997)].
16.  E. Ya. Denisyuk and V. V. Tereshatov, "A Nonlinear Theory of the Process of Elastomer Swelling in Low-Molecular-Mass Liquids," Vysokomolek. Soed. A 42 (1), 71-83 (2000) [Polymer Sci. Ser. A (Engl. Transl.) 42 (1), 56-67 (2000)].
17.  E. Ya. Denisyuk and E. R. Volkova, "The Effect of the Thermodynamic Quality of Solvent on the Kinetics of Polymer Network Swelling," Vysokomolek. Soed. A 45 (7), 1160-1168 (2003) [Polymer Sci. Ser. A (Engl. Transl.) 45 (7), 686-693 (2003)].
18.  E. Ya. Denisyuk and E. R. Volkova, "On the Permeability of Polymer Networks," Vysokomolek. Soed. A 46 (5), 896-904 (2004) [Polymer Sci. Ser. A (Engl. Transl.) 46 (5), 565-571 (2004)].
19.  E. Ya. Denisyuk, "Mechanics and Thermodynamics of Fluid-Saturated Highly Elastic Materials," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 118-138 (2010) [Mech. Solids (Engl. Transl.) 45 (1), 94-110 (2010)]
20.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
21.  I. Prigozhin and R. Defey, Chemical Thermodynamics (Longmans Green and Co, London, 1954; Nauka, Novosibirsk, 1966).
22.  R. Temam, Navier-Stokes equations (North-Holland Publishing Company, Amsterdam, New York, 1977; Mir, Moscow, 1981).
23.  A. A. Tager, Physical Chemistry of Polymers (Khimiya, Moscow, 1978).
24.  P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979; Mir, Moscow, 1982).
Received 12 August 2014
Link to Fulltext
<< Previous article | Volume 53, Issue 2 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100