Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-5pp.501-509

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
D.V. Ukrainskii, "On the Type of Flexural Edge Wave on a Circular Plate," Mech. Solids. 53 (5), 501-509 (2018)
Year 2018 Volume 53 Number 5 Pages 501-509
DOI 10.3103/S0025654418080046
Title On the Type of Flexural Edge Wave on a Circular Plate
Author(s) D.V. Ukrainskii (Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia, d.v.ukrainskiy@gmail.com)
Abstract The article deals with the question of what is a type of flexural edge wave on a circular plate. It is shown that, in contrast to the case of a rectilinear plate, the flexural edge wave on a circular plate is a wave of a fundamentally different type, namely a whispering gallery wave. With an increase in the wave number, this wave gradually turns into an analogue of the Konenkov wave, but this happens in the region of very short waves. The dependence on Poisson's ratio (the "critical" value of the harmonic number, at which the wave transformation from whispering gallery type to the Konenkov type occurs) is constructed. The certain conditions, under which the transition region does not go beyond the scope of the Kirchhoff theory, are determined.
Keywords flexural edge wave, circular plate, whispering gallery wave, Konenkov wave
References
1.  J.W.S. Rayleigh, "On Waves Propagated Along the Plane Surface of an Elastic Solid," Proc. Lond. Math. Soc. 17 (253), 4-11 (1885).
2.  R. Stoneley, "Elastic Waves at the Surface of Separation of Two Solids," Proc. Roy. Soc. Lond. 106 (732), 416-428 (1924).
3.  Yu.K. Konenkov, "On a Flexural Wave of Rayleigh Type," Sov. Phys. Acoust., No. 6, 124-126 (1960).
4.  V.M. Babich and V.S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves (Nauka, Moscow, 1972) [in Russian].
5.  G.R. Kirchhoff, "Über das Gleichgewicht und die Bewegung einer elastischen Scheibe," J. Reine Angew. Math. 1850 (40), 51-88 (1850).
6.  M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1965).
7.  Yu.D. Kaplunov , E.L. Kossovich, R.R. Mukhomodyarov, and O.V. Sorokina, "Explicit Propagation Models for Bending Edge and Interface Waves in thin Isotropic Plates," Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform. 13 (1), 56-63 (2013).
Received 07 December 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 5 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100