| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 53, Issue 4 / 2018 | Next article >> |
A.F. Razin, "The Problem of Optimum Design of Composite Housings of Solid Propellant Rocket Engines," Mech. Solids. 53 (4), 418-426 (2018) |
Year |
2018 |
Volume |
53 |
Number |
4 |
Pages |
418-426 |
DOI |
10.3103/S0025654418040076 |
Title |
The Problem of Optimum Design of Composite Housings of Solid Propellant Rocket Engines |
Author(s) |
A.F. Razin (The Central Research Institute for Special Machinery, Zavodskaya ul. 1, Khotkovo, Moscow Region, 141371 Russia, razin@crism-cat.ru) |
Abstract |
The article, which is of a review nature, discusses the problems of designing and calculating the hulls of rocket engines of solid propellant with a high degree of weight perfection and made of composite materials by the method of automatic continuous winding. The history of the creation of such structures is briefly described and the problems of optimal reinforcement and optimization of the structural forms of composite membrane-free shells of revolution are considered. The results obtained in this direction by the scientific school of academician V.V. Vasiliev are discussed. |
Keywords |
composite materials, solid propellant rocket engines, design |
References |
1. | J.E. Green,
"Overview of Filament Winding,"
SAMPE J.
37 (1), 7-11 (2001). |
2. | J.P. Kushnerick,
"Plastic Polaris Planned,"
Airc. Miss.
No. 2, 15-17 (1961). |
3. | M.A. Pervov,
Missile Weapons of Strategic Missile Forces
(Violanta, Moscow, 1999) [in Russian]. |
4. | Yu.S. Solomonov, V.V. Vasiliev, and V.P. Georgievsky,
"Composite Materials in Rocket and Aerospace Engineering,"
Trudy MIT
8 (1), 7-25 (2006). |
5. | L.N. Lavrov, A.A. Bolotov, V.I. Gapanenko, et al.
Designs of Rocket Engines for Solid Fuel
Ed. by L.N. Lavrov
(Mashinostroenie, Moscow, 1993) [in Russian]. |
6. | V.V. Novozhilov, K.F. Chernykh, and E.I. Mikhailovsky,
Linear Theory of Thin Shells
(Polytechnica, Leningrad, 1991) [in Russian] |
7. | V.V. Vasiliev,
Mechanics of Structures Made of Composite Materials
(Mashinostroenie, Moscow, 1988) [in Russian]. |
8. | I.F. Obraztsov, V.V. Vasiliev, and V.A. Bunakov,
Optimal Reinforcement of the Shells of Rotation of Composite Materials
(Mashinostroenie, Moscow, 1977) [in Russian]. |
9. | S.P. Finikov,
Differential Geometry
(MGU, Moscow, 1961) [in Russian]. |
10. | I.V. Heckeler,
Static Elastic Body
(ONTI-GTTI, Leningrad, Moscow, 1934) [in Russian]. |
11. | J.Zickel,
"Isotensoid Pressure Vessels,"
ARS J.
32 (3), 950-951 (1962). |
12. | W.S. Read,
"Equilibrium Shapes for Pressurized Fiberglass Domes,"
J. Engng Ind.
85, 115-118 (1963). |
13. | J.O. Outwater,
"Filament Wound Internal Pressure Vessels,"
Mod. Plast.
3, 135-139 (1963). |
14. | H.U. Schuerch and O.R. Burggraf,
"Analytical Design for Optimum Pressure Vessels,"
AIAA J.
2 (5), 809-820 (1964). |
15. | S.B. Cherevatsky,
"About Arbitrary Filament Shells Loaded with Pressure,"
in Strength and Dynamics of Aircraft Engines
(Mashinostroenie, Moscow, 1966), Vol. 4, pp. 20-30 [in Russian]. |
16. | V.V. Vasiliev and A.N. Elpatyevsky,
"The Optimal Shape of the Shell of Rotation Made of Fiberglass by Continuous Winding,"
in Durability and Stability of Thin-Walled Aircraft Structures
(Mashinostroenie, Moscow, 1971) Vol. 3, pp. 220-227 [in Russian]. |
17. | A.C. Pipkin and R.S. Rivlin,
"Minimum-Weight Design for Pressure Vessels Reinforced with Inextensible Fibers,"
J. App. Mech.
No. 3 103-108 (1963). |
18. | E.F. Kharchenko,
High Strength Extremely Reinforced Organoplastics
(NTC Informtekhnika, Mocsow, 1999) [in Russian]. |
19. | A.B. Mitkevich and V.D. Protasov,
"Equilibrium Fiberglass Pressure Cylinders of Minimum Mass with Non-Geodetic Winding,"
Mech. Polym.
No. 6, 983-987 (1975). |
20. | J.P. Denost,
"New Design Concepts for Filament-Wound Pressure Vessel with Unequal Polar
Openings,"
in Proceedings of the AIAA/SAE/ASME 18-th Joint Propulsion Conference, Cleveland, Ohio, 1982
Paper AIAA-82-1067. |
21. | J.De Carvalho, M. Loissie, D. Vandepitte, and H. Van Brussel,
"Optimization of the Wound Parts Based on Non-Geodesic Winding,"
Comp. Manufact.
No. 6, 79-84 (1995). |
22. | V.V. Vasiliev and A.N. Elpatyevsky.
"Nonlinear Deformations of the Shells of Rotation of Elastic Threads under the Action of Internal Pressure,"
in Strength Calculations
(Mashinostroenie, Moscow, 1968),
Vol. 13, pp. 128-142 [in Russian]. |
23. | S.A. Soldatov,
"Deformability and Strength of Composite Pressure Cylinders,"
in Mechanics of Structures Made of Composite Materials
(Mashinostroenie, Moscow, 1992),
Vol. 1, pp. 339-350 [in Russian]. |
24. | I.F. Obraztsov, V.V. Vasiliev, and A.F. Razin,
"Quasilinear Membrane Theory of Composite Pressure
Vessels,"
in Proc. of the 7-th Int. Conf. on Composite Materials
(China, 1989), Vol. 3, pp. 118-124. |
25. | V.V. Vasiliev and A.F. Razin,
"Geometrically Nonlinear Applied Theory of Composite Shells,"
in Strength Calculations
(Mashinostroenie, Moscow, 1989),
Vol. 30, pp. 18-30 [in Russian]. |
26. | A.B. Mitkevich, V.D. Protasov, and S.V. Osinin,
"Design of Equally Stressed Pressure Shells of Composite Materials in the Final Deformed State,"
Mekh. Comp. Mater.
No. 3, 545-547 (1987). |
27. | A.B. Mitkevich and V.D. Protasov,
"Nonlinear Problems of Designing and Deforming
Pressure Cylinders from Composite Materials,"
in Mechanics of Composite Materials. Vol. 2. Structures Made of Composites
(Zinatne, Riga, 1992), pp. 267-273. |
28. | A.N. Elpatyevsky and V.V. Vasiliev,
The Strength of Cylindrical Shells of Reinforced Materials
(Mashinostroenie, Moscow, 1972) [in Russian]. |
29. | T. De Jong,
"General Theory of Isotensoid Pressure Vessels,"
in Contribution to the Theory of Aircraft Structures
(Delft University Press, Delft, 1972), pp. 207-227. |
30. | H. Fukunaga and M. Uemura,
"Optimum Design of Helically Wound Composite Pressure Vessels,"
Comp. Struct.
No. 1, 31-49 (1983). |
31. | V.A. Bunakov and A.L. Radovinsky,
"On The Determination of the Rational Form of Momentless Shells of Rotation Made by the Method of Winding from High Modulus Materials,"
Mekh. Polim.
No. 3, 822-828 (1975). |
32. | A.B. Mitkevich,
"Designing the Bottoms of Pressure Cylinders from an Orthotropic Material,"
Vopr. Obor. Teck.
Ser. 15. Iss. 3 (132)-3 (133) 44-47 (2003). |
33. | C.C. Liang, H.W. Chen, and S.H. Wang.
"Optimum Design of Contouring for Surface-Wound Composite Factor,"
Comp. Struct.
No. 58, 469-482 (2002). |
34. | V.V. Vasiliev and A.A. Krikanov,
"Equistressed Membrane Shells of Revolution Formed by Continuous Winding of a Reinforced Tape,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 4, 119-133 (2002)
[Mech. Solids (Engl. Transl.)
37 (4), 98-110 (2011)]. |
35. | V.P. Molochev,
"Development of Composite Pressure Vessels for Space Applications,"
Mekh. Comp. Mat. Konstr.
16 (4), 587-596 (2010). |
36. | A.V. Azarov, A.A. Babichev, and F.K. Sinkovskiy,
"Design and Manufacture of a High-pressure Space Tank for a Spacecraft,"
Comp. Nanostruct.
No. 4, 44-57 (2013). |
37. | V.V. Vasiliev and I.I. Preobrazhenskii,
"The Optimal Shape of the Shells of Rotation, Made by the Method of Multi-zone Winding,"
in Proceedings of TSNIITS (Sudostroyeniye, Leningrad, 1974), Vol. 137, pp. 12-23 [in Russian]. |
38. | V.L. Segal and S.B.Cherevatskii,
"Threading Nets on the Surface," in
Materials for the 6th All-Union Conf. on the Theory of Plates and Shells, Baku, 1966
(Nauka, Moscow, 1966), pp. 749-753 [in Russian]. |
39. | V.A. Bunakov, V.V. Vasiliev, and V.S. Petushkov,
"Optimal Design and Calculation of
Pressure Cylinders from Composite Materials,"
in Calculation of Spatial Structures
(Stroiizdat, Moscow, 1976), Vol. 17, pp. 142-160 [in Russian]. |
40. | V.V. Vasiliev, A.A. Krikanov, and A.F. Razin,
"New Generation of Filament-wound Composite Pressure Vessels for Commercial Applications,"
Comp. Struct.
No. 62, 449-459 (2003). |
41. | V.V. Vasiliev, A.F. Razin, and F.K. Sinkovskiy,
"The Optimal Form of a Composite Pressure Cylinder with a Metal Liner,"
Comp. Nanostruct.
6 (1), 18-24 (2014). |
42. | V.A. Bunakov, V.D. Protasov, and S.B. Cherevatskii,
"Optimum Design of Membrane Composite Shells of Revolution,"
in Mechanics of Composites Ed. by I.F. Obraztsov and V.V. Vasiliev
(Mir, Moscow, 1982), pp. 252-280 [in Russian]. |
43. | V.A. Bunakov and V.D. Protasov,
"Composite Hressure Cylinders,"
Composite materials. Handbook Ed. by V.V. Vasiliev and Yu.M. Tarnopolskii
(Mashinostroenie, Moscow, 1990), pp. 353-376 [in Russian]. |
44. | V.V. Vasiliev,
"Composite Materials in Aerospace Engineering,"
Vsye Materialy
No. 7, 2-7 (2012). |
45. | V.V. Vasiliev,
Composite Pressure Vessels - Analysis, Design, and Manufacturing
(Bull Ridge Publishing, Blacksburg, Virginia USA, 2009). |
46. | V.V. Vasiliev and N.G. Moroz,
Composite Pressure Cylinders - Design, Calculation, Manufacturing and Testing
(Mashinostroenie, Moscow, 2015) [in Russian]. |
|
Received |
10 March 2018 |
Link to Fulltext |
|
<< Previous article | Volume 53, Issue 4 / 2018 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|