Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-2pp.138-146

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 53, Issue 2 / 2018 | Next article >>
V.R. Ganieva, F.U. Enikeev, and A.A. Kruglov, "Identification of Phenomenological Superplasticity Models Based on the Results of Technological Experiments," Mech. Solids. 53 (2), 138-146 (2018)
Year 2018 Volume 53 Number 2 Pages 138-146
DOI 10.3103/S0025654418020036
Title Identification of Phenomenological Superplasticity Models Based on the Results of Technological Experiments
Author(s) V.R. Ganieva (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia, venera5577@mail.ru)
F.U. Enikeev (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia)
A.A. Kruglov (Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia; Institute for Metals Superplasticity Problems of the Russian Academy of Sciences, ul. Stepana Khalturina 39, Ufa, 450001 Russia)
Abstract A general scheme for identifying the constitutive equations of superplasticity, according to which the values of material constants are calculated by the results of technological experiments using interpretation techniques based on the adoption of additional hypotheses of the stress-strain state nature in the deformation region, is proposed. The verification of the result is carried out by comparing the experimental data with the corresponding solutions of the boundary problems for superplasticity mechanics obtained using software complexes such as ANSYS and ABAQUS. The obtained result is used as input data for a program, and the solution of the boundary value problem is found without additional hypotheses of the stress-strain state nature. The practical application of the proposed approach for the standard power model of superplasticity shows that the accuracy of the forming duration simulation is no less than 4%.
Keywords superplasticity, constitutive equations, identification, boundary value problem, ANSYS, technological experiment
References
1.  O. M. Smirnov, Metal Forming in the Superplastic State (Mashinostroyenie, Moscow, 1979) [in Russian].
2.  R. A. Vasin and F. U. Enikeev, Introduction to Mechanics of Superplasticity. Part I (Gilem, Ufa, 1998) [in Russian].
3.  R. A. Vasin, F. A. Enikeev, A. A. Kruglov, and R. V. Safiullin. "On the Identification of Constitutive Relations by the Results of Technological Experiments," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 111-123 (2003) [Mech. Solids (Engl. Transl.) 38 (2), 90-100 (2003)]
4.  K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeevm, Superplastic Flow: Phenomenology and Mechanics (Springer, Berlin, 2001).
5.  W. A. Backofen, I. R. Turner, and D. H. Avery "Superplasticity in an Al-Zn Alloy," ASM Trans. Q. 57, 980-990 (1964).
6.  R. A. Vasin, F. U. Enikeev, M. Tokuda, and R. V. Safiullin, "Mathematical Modeling of the Super-Plastic Forming of a Long Rectangular Sheet," Int. J. Non-Lin. Mech. 35, 799-807 (2003).
7.  F. U. Enikeev, "Mathematical Modeling Of Processes Of Pressure Treatment Of Industrial Titanium Alloys In The Superplasticity State," Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metalurg., No. 1, 43-49 (2008) [Russ. J. Non-Ferrous Met. (Engl. Transl.) 49 (1), 34-41 (2008)].
8.  M. H. Hojjati, M. Zoorabadi, and S. J. Hosseinipour, "Optimization of superplastic Hydroforming Process of Aluminium Alloy 5083," J. Mater. Process. Technol. 205, 482-88 (2008).
9.  T. M. Zagirov, A. A. Kruglov, and F. U. Enikeev, "Identifying the Rheological Parameters of Superplasticity from Test Shaping of Sheets at Constant Pressure," Zavodsk. Lab.. Diagnost. Mater. 76 (9), 48-56 (2010).
10.  A. Kh. Akhunova and S. V. Dmitriev, "The Constitutive Equations for the Titanium Alloy VT6 in the Superplasticity Regime," Polzunovskiy Al'manakh, No. 3, 99-100 (2008).
11.  A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, and R. V. Safiullin, "A Method for Estimating the Coefficient of Friction between a Die and a Sample during Superplastic Forming of Sheet Material into a Conical Die," Kuznechno-Shtampovochnoe Proizvodstvo, No. 6, 15-19 (2009).
12.  A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, and R. V. Safiullin, "Superplastic Forming of Sheet Billets into an Extended Wedge Die," Deform. Razrush. Mater., No. 9, 38-41 (2010).
13.  E. N. Chumachenko, A. N. Skorokhodov, A. I. Aleksandrovich, et al., "The Procedure for Calculating Stresses and Deformations during Pressure Treatment of Materials with Complex Rheological Properties," Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg, No. 11, 89-93 (1981) [Steel in Transl. (Engl. Transl.)].
14.  E. N. Chumachenko, "Development of Computer Simulation of Industrial Superplastic Sheet Forming," Mater. Sci. Engng. A. 499 (1-2), 342-346 (2009).
15.  V. V. Boytsov, M. A. Tsepin, N. N. Karpilyansky, and A. N. Ershov, "Statistical Analysis of the Accuracy for the Description of the Dependence of the Flow Stresses on the Strain Rate in the State of Superplasticity by Various Phenomenological Equations," Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metalurg., No. 5, 69-74 (1982).
16.  R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Materials: Production, Structure, and Properties (Nauka, Moscow, 2007) [in Russian].
17.  R. R. Mulyukov, "Development of the Principles for Obtaining and Studying Bulk Nano-Structured Materials in IMSP RAS," Ross. Nanotekhn. 2 (7-8), 38-53 (2007).
18.  G. Giuliano and S. Franchitti, "On the Evaluation of Superplastic Characteristics Using the Finite Element Method," Int. J. Mach. Tools Manuf. 47, 471-476 (2007).
19.  J. H. Yoon, H. S. Lee, and Y. M. Yi, "Finite Element Simulation on Superplastic Blow Forming of Diffusion Bonded 4 Sheets," J. Mater. Process. Technol. 201, 68-72 (2008).
20.  T. M. Zagirov, Yu. V. Zherebtsov, E. M. Kadirov, and F. U. Enikeev, "Taking into Account Grain Growth during the Finite-Element Modeling of the Superplastic Formation of Promising Construction Materials," Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metalurg., No. 1, 41-45 (2011) [Russ. J. Non-Ferrous Met. (Engl. Transl.) 52 (1), 39-43 (2011)].
21.  J. Hedworth and M. J. Stowell, "The Measurement of Strain Rate Sensitivity in Superplastic Alloys," J. Mater. Sci. 6, 1061-1069 (1971).
22.  J. A. Belk, "A Quantitative Model of the Blow-Forming of Spherical Surfaces in Superplastic Sheet Metal," Int. J. Mech. Sci. 17, 505-511 (1975).
23.  F. U. Enikeev and A. A. Kruglov "An Analisys of the Superplastic Inflation Tests," Int. J. Mech. Sci. 37, 473-483 (1995).
24.  J. Cheng, "The Determination of Material Parameters from Superplastic Inflation Tests," J. Mater. Process. Technol. 58, 233-246 (1996).
25.  S. A. Aksenov, I. Y. Zakhariev, and A. V. Kolesnikov, "Characterization of Superplastic Materials by Results of Free Bulging Tests," Mater. Sci. Forum. 838-839, 552-556 (2016).
26.  T. M. Zagirov, M. S. Karimov, A. A. Kruglov, and F. U. Enikeev, "Method to Determine the Rheological Properties of Microcrystaline Materials from the Technological Experiments," Probl. Mashinostr. Avtomatizatsii, No. 2, 65-74 (2010).
27.  R. V. Safiullin, F. U. Enikeev, and M. Mukametrakhimov, "A Method for Determining the Strain-Rate Sensitivity Factor in Superplastic Sheet Materials Formed at Constant Pressure," Zavodsk. Lab.. Diagnost. Mater. No. 12, 41-46 (1999) [Industr. Lab. (Engl. Transl.) 65 (12), 798-803 (1999)].
28.  R. V. Safiullin, R. A. Vasin, and F. U. Enikeev, "Determination of the Parameters of Superplastic Forming for Long Rectangular Thin Sheet Titanium Alloy Ti-6Al-4V," Acta Metal. Sinica. 13 (2), 567-573 (2000).
29.  G. G. Cornfield and R. H. Johnson, "The Forming of Superplastic Sheet Materials," Int. J. Mech. Sci. 12, 479-490 (1970).
30.  F. U. Enikeev, "Plastic Behavior of Superplastic Material Moving between Two Coaxial Rotating Cylinders," Int. J. Mech. Sci. 35, 81-88 (1993).
31.  T. M. Zagirov, Yu. V. Zherebtsov, E. M. Kadirov, and F. U. Enikeev, "Taking into Account Grain Growth during the Finite-Element Modeling of the Superplastic Formation of Promising Construction Materials," Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metalurg., No. 1, 41-45 (2011). [Russ. J. Non-Ferrous Met. (Engl. Transl.) 52 (1), 39-43 (2011)].
32.  R. A. Vasin, F. U. Enikeev, and R. V. Safiullin, "Mathematical Modeling of Superplastic Forming of a Long Rectangular Box Section," Mater. Sci. Forum 304-306, 765-770 (1999).
33.  R. V. Safiullin and F. U. Enikeev, "Calculation of Regimes for Superplastic Forming of an Elongated Rectangular Membrane," Kuznechno-Shtampovochnoe Proizvodstvo. Obrababotka Metallov Davleniem, No. 3, 35-40 (2001).
34.  I. F. Ayupov, T. M. Zagirov, and F. U. Enikeev, "Effect of Grain Growth on the Deformation Regimes of an Extended Rectangular Membrane in the State of Superplasticity," Metalloobrab. No. 4, 22-27 (2010).
35.  Yu. V. Zherebtsov, A. Yu. Samoylova, T. M. Zagirov, and F. U. Enikeev, "Determination of Superplastic Properties from the Results of Test Forming of Rectangular Membranes at Constant Pressure," Vestnik Magnitogorsk. Gos. Tekhn. Univ., No. 1, 46-51 (2011).
36.  Yu. V. Zherebtsov, T. M. Zagirov, I. F. Ayupov, and F. U. Enikeev, "Finite Element Modeling of Super Plastic Forming of Ultrafine-Grained Sheet Materials," Obrab. Metall. (Tekhnol., Oborud., Instrum.) No. 2, 3-7 (2010).
37.  V. R. Ganieva, A. S. Lyubimov, and F. U. Enikeev, "Production Processes Automation of the Superplastic Forming through the Use of Computer Modelling Methods," Avtomatizats. Sovremenn. Tekhnol. No. 1, 3-8 (2012).
38.  V. R. Ganieva, A. S. Lyubimov, Yu. V. Zherebtsov, and F. U. Enikeev, "Method for Calculating the Regime of Superplastic Forming of an Elliptical Membrane," Kuzn.-Shtamp. Proizv. Obrab. Met. Davl., No. 4, 3-10 (2011).
39.  V. R. Ganieva, A. I. Kutluyeva, A. Yu. Samoylova, and F. U. Enikeev, "Features of Test Forming of Elliptical Membranes at Constant Pressure," Zavodsk. Lab.. Diagnost. Mater. 77 (10), 51-57 (2011).
40.  V. R. Ganieva, Yu. V. Zherebtsov, A. S. Lyubimov, and F. U. Enikeev, "Method for Calculating Optimum Conditions for the Manifestation of the Superplasticity Effect in Aluminum Alloys," Metalloobrab. No. 5, 29-34 (2011).
41.  V. R. Ganieva, A. I. Kutluyeva, and F. U. Enikeev, "Method for Determining the Parameters of the Inflection Point of the Sigmoid Curve of Superplasticity," Probl. Mashinostr. Avtomatizatsii, No. 1, 132-138 (2012).
42.  V. R. Ganieva, Yu. V. Zherebtsov, and F. U. Enikeev, "Influence of Threshold Stress on the Superplastic Shaping of a Circular Membrane," Vestnik Mashinostr. No. 8, 59-63 (2011) [Russ. Engng Res. (Engl. Transl.) 31 (8), 771-775 (2011)].
43.  F. U. Enikeev, "Determination of the Value of the Threshold Stress for Superplastic Flow," Mater. Sci. Engng. A 276, 22-31 (2000).
44.  Yu. V. Zherebtsov, V. R. Ganieva, and F. U. Enikeev, "Calculation of the Process Duration for Free Forming of Sheet Metal into a Cylindrical Die in a State of Superplasticity," Tekhnol. Mashinostr., No. 8, 11-18 (2011).
45.  V. R. Ganieva, A. S. Lyubimov, A. I. Kutluyeva, and F. U. Enikeev, "Unbiased Estimates of the Parameter Rate Sensitivity of Superplastic Materials," Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metalurg., No. 3, 39-44 (2012) [Russ. J. Non-Ferrous Met. (Engl. Transl.) 53 (3), 250-254 (2008)].
46.  V. R. Ganieva, A. S. Lyubimov, and F. U. Enikeev, "Methodology of Identification of the Model O. M. Smirnova," Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., No. 4, 40-44 (2012).
47.  F. Jovane, "An Approximate Analysis of the Superplastic Forming of a Thin Circular Diaphragm: Theory and Experiments," Int. J. Mech. Sci. 10, 403-427 (1968).
48.  N. Chandra and D. Kannan, "Superplastic Sheet Metal Forming of a Generalised Cup. Part I. Uniform Thinning. Part II. Nonuniform Thinning," J. Mater. Engng Perfom. 1, 801-812 (1992).
Received 14 March 2016
Link to Fulltext
<< Previous article | Volume 53, Issue 2 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100