Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2018-1pp.23-32

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
E.P. Dats, E.V. Murashkin, A.V. Tkacheva, and G.A. Shcherbatyuk, "Thermal Stresses in an Elastoplastic Tube Depending on the Choice of Yield Conditions," Mech. Solids. 53 (1), 23-32 (2018)
Year 2018 Volume 53 Number 1 Pages 23-32
DOI 10.3103/S002565441801003X
Title Thermal Stresses in an Elastoplastic Tube Depending on the Choice of Yield Conditions
Author(s) E.P. Dats (Vladivostok State University of Economics and Service, ul. Gogolya 41, Vladivostok, 690014 Russia)
E.V. Murashkin (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409 Russia; Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5 str. 1, Moscow, 105005 Russia)
A.V. Tkacheva (Institute of Machinery and Metallurgy of the Far East Branch of the Russian Academy of Sciences, ul. Metallurgov 1, Komsomolsk-on-Amur, 681005 Russia, 4nansi4@mail.ru)
G.A. Shcherbatyuk (Komsomolsk-on-Amur State Technical University, pr. Lenina 27, Komsomol'sk-on-Amur, 681013 Russia)
Abstract We use the solution of a one-dimensional problem of the theory of thermal stresses in an elastoplastic tube heated on its interior surface and maintained at a constant temperature on the exterior surface as an example to make a comparison of both the results and solution methods depending on the choice of each of three conventional yield criteria: piecewise linear criteria of maximum shear and maximum reduced stresses and a smooth criterion of maximum octahedral stresses. It is established that while the transition of stresses from the face of the Tresca prism to its edge (change in the flow regime) in the first of the piecewise linear yield criteria takes place at the plastic flow onset, in the second one, this transition occurs on the elastoplastic boundary. The yield stress is assumed to be temperature dependent.
Keywords thermoelasticity, plasticity, yield surface, thermal stress
References
1.  D. R. Bland, Elastoplastic Thick-Walled Tubes of Work-Hardening Material Subject to Internal and External Pressures and to Temperature Gradients," J. Mech. Phys. Solids 4 (4), 209-229 (1956).
2.  M. Bengeri and W. Mack, "The Influence of the Temperature Dependence of the Yield Stress on the Stress Distribution in a Thermally Assembled Elastic-Plastic Shrink Fit," Acta Mech. 103 (1-4), 243-257 (1994).
3.  Á. Kovács, "Residual Stresses in Thermally Loaded Shrink Fits," Periodica Polytech.: Mech. Engng 40 (2), 103-112 (1996).
4.  A. A. Burenin, E. P. Dats, and A. V. Tkacheva, "To Modeling of the Shrink Fit Technology," Sib. Zh. Industr. Mat., No. 17 (3), 40-47 (2014).
5.  E. P. Dats, M. R. Petrov, and A. V. Tkacheva, "Piecewise Linear Plastic Potentials within the Framework of the Theory of the Thermal Stresses Concerning to Shrink Fit," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost. No. 4(26), 162-177 (2015).
6.  Y. Orçan and U. Gamer, "Elastic-Plastic Deformation of a Centrally Heated Cylinder," Acta Mech. 90 (1-4), 61-80 (1991).
7.  W. Mack, "Thermal Assembly of an Elastic-Plastic Hub and a Solid Shaft," Arch. Appl. Mech. 63 (1), 42-50 (1993).
8.  M. Gülgeç and Y. Orçan, "On the Elastic-Plastic Deformation of a Centrally Heated Cylinder Exhibiting Linear Hardening," ZAMM 79 (7), 493-498 (1999).
9.  S. E. Aleksandrov, E. A. Lyamina, and O. V. Novozhilova, "The Influence of the Relationship between Yield Strength and Temperature on the Stress State in a Thin Hollow Disk," Probl. Mashinostr. Nadezhn. Mashin, No. 3, 43-48 (2013) [J. Machin. Manufact. Reliabil. (Engl. Transl.) 42 (3), 214-218 (2013)].
10.  S. E. Aleksandrov, E. V. Lomakin, and N. R. Dzeng, "Solution of the Thermoelastoplastic Problem for a Thin Disk of Plastically Compressible Material Subjected to Thermal Loading," Dokl. Ross. Akad. Nauk 443 (3), 310-312 (2012) [Dokl. Phys. (Engl. Transl.) 57 (3), 136-139 (2012)].
11.  B. A. Boley and J. Y. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960; Mir, Moscow, 1964).
12.  A. Yu. Ishlinsky and D. D. Ivlev, The Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].
13.  G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity (Dal'nauka, Vladivostok, 1998) [in Russian].
Received 10 April 2017
Link to Fulltext
<< Previous article | Volume 53, Issue 1 / 2018 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100