Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-6pp.613-639

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 52, Issue 6 / 2017 | Next article >>
Yu.N. Chelnokov, "Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I," Mech. Solids. 52 (6), 613-639 (2017)
Year 2017 Volume 52 Number 6 Pages 613-639
DOI 10.3103/S0025654417060036
Title Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I
Author(s) Yu.N. Chelnokov (Institute for Precision Mechanics and Control Problems of the Russian Academy of Sciences, ul. Rabochaya 24, Saratov, 410028 Russia; Chernyshevskii Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia, chelnokovyun@gmail.com)
Abstract We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper.

A survey of papers related to the regularization of the differential equations of the two- and three-body problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given.

Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventh-order differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass.

The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classical methods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.
Keywords two- and three-body problems, differential equations of motion, quaternion, Kustaanheimo-Stiefel variables
References
1.  L. Euler, "De motu rectilineo trium corporum se mutuo attrahentium," Nov. Comm. Petrop. 11, 144-151 (1765).
2.  T. Levi-Civita, "Traettorie singolari ed urbi nel problema ristretto dei tre corpi," Ann. Mat. Pura Appl. 9, 1-32 (1904).
3.  T. Levi-Civita, "Sur la regularization du probleme des trios corps," Acta Math. 42, 99-144 (1920).
4.  T. Levi-Civita, "Sur la resolution qualitative du probleme restreint des trois corps," Opere mathematiche, No. 2, 411-417 (1956).
5.  P. Kustaanheimo, "Spinor Regularization of the Kepler Motion," Ann. Univ. Turku 73, 3-7 (1964).
6.  P. Kustaanheimo and E. Stiefel, "Perturbation Theory of Kepler Motion Based on Spinor Regularization," J. Reine Angew. Math. 218, 204-219 (1965).
7.  E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer, Berlin, 1971; Nauka, Moscow, 1975).
8.  H. Hopf, "Über die Abbildung der draidimensionalen Sphare auf die Kugelflâche," Math. Ann. 104, 637-665 (1931).
9.  V. A. Brumberg, Analytical Algorithms of Celestial Mechanics (Nauka, Moscow, 1980) [in Russian].
10.  T. V. Bordovitsyna, Contemporary Numerical Methods in Problems of Celestial Mechanics (Nauka, Moscow, 1984) [in Russian].
11.  T. V. Bordovitsyna and V. A. Avdyushev, Theory of Motion of Artificial Satellites of the Earth. Analytical and Numerical Methods (Izdat. Tomsk. Univ., Tomsk, 2007) [in Russian].
12.  Yu. N. Chelnokov, "Application of Quaternions in Mechanics of Space Flight," Giroskop. Navigats., No. 4, 47-66 (1999).
13.  Yu. N. Chelnokov, "Analysis of Optimal Motion Control for a Material Point in a Central Field with Application of Quaternions," Izv. Ross. Akad. Nauk. Teor. Sist. Upravl., No. 5, 18-44 (2007) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 46 (5), 688-713 (2007)].
14.  Yu. N. Chelnokov, Quaternion Models and Methods of Dynamics, Navigation, and Control of Motion (Fizmatlit, Moscow, 2011) [in Russian].
15.  Yu. N. Chelnokov, "Quaternion Regularization in Celestial Mechanics and Astrodynamics and Trajectory Motion Control. I," Kosmich. Issled. 51 (5), 389-401 (2013) [Cosmic Res. (Engl. Transl.) 51 (5), 350-361 (2013)].
16.  Yu. N. Chelnokov, "To Regularization of Equations of Spatial Two-Body Problem," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 12-21 (1981) [Mech. Solids (Engl. Transl.)].
17.  Yu. N. Chelnokov, "On Regular Equations of Spatial Two-Body Problem," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 151-158 (1984) [Mech. Solids (Engl. Transl.)].
18.  Yu. N. Chelnokov, Quaternion Methods in Problems of Perturbed Central Motion of Material Point. Pt. 1: General Theory. Applications to Regularization Problem and to Problem of Motion of Artificial Satellite of the Earth, Dep. VINITI 13.12.85, No. 218628-B (Moscow, 1985) [in Russian].
19.  Yu. N. Chelnokov, Quaternion Methods in Problems of Perturbed Central Motion of Material Point. Pt. 2: Spatial Problem of Unperturbed Central Motion. Problem with Initial Conditions, Dep. VINITI 13.22.85, No. 8629-B (Moscow, 1985) [in Russian].
20.  Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Solid Body Mechanics and Their Applications. Geometry and Kinematics of Motion (Fizmatlit, Moscow, 2006) [in Russian].
21.  Yu. N. Chelnokov, "Application of Quaternions in Theory of Orbital Motion of Artificial Satellite. I," Kosmich. Issled. 30 (6), 759-770 (1992) [Cosmic Res. (Engl. Transl.) 30 (6), 612-621 (1992)].
22.  Yu. N. Chelnokov, "Application of Quaternions in Theory of Orbital Motion of Artificial Satellite. II," Kosmich. Issled. 31 (3), 3-15 (1993) [Cosmic Res. (Engl. Transl.) 30 (6), 409-418 (1992)].
23.  Yu. N. Chelnokov, "Quaternion Regularization and Stabilization of Perturbed Central Motion. Pt. 1," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 20-30 (1993) [Mech. Solids (Engl. Transl.)].
24.  Yu. N. Chelnokov, "Quaternion Regularization and Stabilization of Perturbed Central Motion. Pt. 2," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 3-15 (1993) [Mech. Solids (Engl. Transl.)].
25.  S. J. Aarseth and K. A. Zare, "Regularization of the Three-Body Problem," Cel. Mech. 10 (2), 185-205 (1974).
26.  H. Hopf, "Über die Abbildungen der dreidimensionalen Sphare auf die Kugelfläche," Math. Ann. 104 (1), 637-665 (1931).
27.  A. Hurwitz, Mathematische Werke, Vol. 2 (Birkhauser, Basel, 1933).
28.  Yu. N. Chelnokov, "Quaternion Regularization and Trajectory Motion Control in Celestial Mechanics and Astrodynamics: II," Kosmich. Issled. 52 (4), 322-336 (2014) [Cosmic Res. (Engl. Transl.) 52 (4), 304-317 (2014)].
29.  A. Deprit, "Ideal Frames for Perturbed Keplerian Motions," Cel. Mech. 13 (2), 253-263 (1976).
30.  M. L. Lidov, "Enhancement of Dimensionality of Hamiltonian Systems. KS-Transformation, the Use of Partial Integrals," Kosmich. Issled. 20 (2), 163-176 (1982) [Cosmic Res. (Engl. Transl.) 20 (2), 115 (1982)].
31.  M. L. Lidov, "Method of Constructing Families of Threedimensional Periodic Orbits in the Hill Problem," Kosmich. Issled. 20 (6), 787-807 (1982) [Cosmic Res. (Engl. Transl.) 20 (6), 547 (1982)].
32.  M. L. Lidov and V. A. Lyakhova, "Families of Three-Dimensional Periodic Orbits of the Hill Problem and Their Stability," Kosmich. Issled. 21 (1), 3-11 (1983) [Cosmic Res. (Engl. Transl.) 21 (1), 1 (1983)].
33.  S. M. Poleshchikov, "Regularization of Canonical Equations of the Two-Body Problem Using a Generalized KS-Matrix," Kosmich. Issled. 37 (3), 322-328 (1999) [Cosmic Res. (Engl. Transl.) 37 (3), 302-308 (1999)].
34.  O. B. Shagov, "On Two Types of Equations of Motion of Artificial Satellite of the Earth in Oscillatory Form," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 3-8 (1990) [Mech. Solids (Engl. Transl.)].
35.  M. D. Vivarelli, "The KS Transformation in Hypercomplex Form," Celest. Mech. Dyn. Astron. 29, 45-50 (1983).
36.  J. Vrbik, "Celestial Mechanics via Quaternions," Can. J. Phys. 72, 141-146 (1994).
37.  J. Vrbik, "Perturbed Kepler Problem in Quaternion Form," J. Phys. A 28, 193-198 (1995).
38.  J. Waldvogel, "Quaternions and the Perturbed Kepler Problem," Celest. Mech. Dyn. Astron. 95, 201-212 (2006).
39.  J. Waldvogel, "Quaternions for Regularizing Celestial Mechanics: The Right Way," Celest. Mech. Dyn. Astron. 102 (1), 149-162 (2008).
40.  E. L. Stiefel and J. Waldvogel, Generalisation de la regularisation de Birkhoff pour le mouvement du mobile dans lespace a trois dimensions (C.R. Acad. Sci., Paris, 1965).
41.  J. Waldvogel, "Die Verallgemeinerung der Birkhoff-Regularisierung für das räumliche Dreikörperproblem," Bull. Astronomique. Ser. 3 2 (2), 295-341 (1967).
42.  E. Stiefel, M. Rossler, J. Waldvogel, and C. A. Burdet, "Methods of Regularization for Computing Orbits in Celestial Mechanics," in NASA Contractor Report NASA CR-769 (1967), pp. 88-115.
43.  H. Poincaré, "Sur l'uniformisation des fonctions analytiques," Acta Math. 31, 1-64 (1907).
44.  K. F. Sundman, "Memoire sur le probleme des trois crops," Acta Math. 36, 105-179 (1912).
45.  G. Lemaitre, "Regularization of the Three-Body Problem," Vistas in Astronomy, No. 1, 207-215 (1955).
46.  T. N. Thiele, "Recherches numeriques concernant des solutions periodiques d'un cas special du probleme des trois corps," Astron. Narchr. 138 (1), 17 (1896).
47.  C. Burrau, "Über Einige in Aussicht Genommene Berechnung, Betreffend einen Spezialfall des Dreikörperproblems," Vierteiljahrschrift Astron. Ges. 41, 261 (1906).
48.  G. D. Birkhoff, "The Restricted Problem of Three Bodies," Rend. Circ. Mat. Palermo 39 (1), 265-334 (1915).
49.  J. Waldvogel, "A New Regularization of the Planar Problem of Three Bodies," Cel. Mech. 6, 221-231 (1972).
50.  R. Roman and I. Szucs-Csillik, "Generalization of Levi-Civita Regularization in the Restricted Three-Body Problem," Astrophys. Space Sci. 349, 117-123 (2014).
51.  S. J. Aarseth, Gravitational N-Body Simulations (Cambridge Univ. Press, New York, 2003).
52.  V. K. Abalakin, E. P. Aksenov, E. A. Grebenikov, et al., Reference Manual in Celestial Mechanics and Astrodynamics (Nauka, Moscow, 1976) [in Russian].
53.  G. N. Duboshin, Celestial Mechanics: Methods of the Theory of Motion of Artificial Celestial Bodies (Nauka, Moscow, 1983) [in Russian].
54.  V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Attitude Control of a Rigid Body (Nauka, Moscow, 1973) [in Russian].
55.  V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].
Received 30 March 2015
Link to Fulltext
<< Previous article | Volume 52, Issue 6 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100