| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 52, Issue 4 / 2017 | Next article >> |
G.V. Garkushin, G.I. Kanel, S.V. Razorenov, and A.S. Savinykh, "Anomaly in the Dynamic Strength of Austenitic Stainless Steel 12Cr19Ni10Ti under Shock Wave Loading," Mech. Solids. 52 (4), 407-416 (2017) |
Year |
2017 |
Volume |
52 |
Number |
4 |
Pages |
407-416 |
DOI |
10.3103/S0025654417040070 |
Title |
Anomaly in the Dynamic Strength of Austenitic Stainless Steel 12Cr19Ni10Ti under Shock Wave Loading |
Author(s) |
G.V. Garkushin (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia)
G.I. Kanel (Joint Institute for High Temperatures of the Russian Academy of Sciences, ul. Izhorskaya 13-2, Moscow, 125412 Russia, kanel@ficp.ac.ru)
S.V. Razorenov (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia)
A.S. Savinykh (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia) |
Abstract |
Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105−106s−1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities. |
Keywords |
shock waves, dynamic strength, viscosity, stainless steel, deformation martensite |
References |
1. | N. F. Morozov and Yu. V. Petrov,
Dynamics of Fracture
(Izdat. SPbGU, St. Petersburg, 1997; Springer, Berlin-Heidelberg-New York, 2000). |
2. | Ya. B. Zel'dovich and Yu. P. Raizer,
Physics of Shock Waves and High Temperature Hydrodynamical Phenomena
(Nauka, Moscow, 1966)
[in Russian]. |
3. | G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov,
Shock Wave Phenomena in Condensed Media
(Yanus-K, Moscow, 1996)
[in Russian]. |
4. | G. I. Kanel,
"Resistance of Metals to Spalling Fracture,"
Fiz. Goreniya i Vzryva,
No. 3, 77-84 (1982)
[Comb. Expl. Shock Waves (Engl. Transl.)
18 (3), 329-335 (1982)]. |
5. | E. Zaretsky and M. Kaluzhny,
"Fracture Threshold and Shock Induced Strengthening of Stainless Steel,"
in AIP Conf. Proc. "Shock Compression in Condensed Matter -1995", Vol. 370
(Woodbury, New York, 1996),
pp. 627-630. |
6. | K. Baumung, H. Bluhm, G. I. Kanel, et al.,
"Tensile Strength of Five Metals and Alloys in the Nanosecond Load Duration Range at Normal and
Elevated Temperatures,"
Int. J. Impact Engng
25, 631-639 (2001). |
7. | A. V. Pavlenko, S. N. Malyugina, D. N. Kazakov, et al.,
"Plastic Deformation and Spall Fracture of Structural 12Cr18Ni10Ti Steel,"
in AIP Conf. Proc. 1426 "Shock Compression in Condensed Matter -2011"
(Melville, New York, 2012), Vol. 370, pp. 627-630. |
8. | S. F. Gnyusov, V. P. Rotstein, A. E. Mayer, et al.,
"Simulation and Experimental Investigation of the Spall Fracture of 304L Stainless Steel
Irradiated by a Nanosecond Relativistic High-Current Electron Beam,"
Int. J. Fract.
199, 59-70 (2016). |
9. | M. A. Meyers, N. N. Thadhani, and S. N. Chang,
"Martensitic Transformation Induced by Tensile Stress Pulses,"
J. Phys. Colloques
49, 355-362 (1988). |
10. | S.-N. Chang and M. A. Meyers,
"Martensitic Transformation Induced by Tensile Stress Pulse in Fe-22.5wt%Ni-4wt%Mn Alloy,"
Acta Metal.
36 (4), 1085-1098 (1988). |
11. | L. M. Barker and R. E. Hollenbach,
"Laser Interferometer for Measuring High Velocities of Reflecting Surface,"
J. Appl. Phys.
43 (11), 4669-4672 (1972). |
12. | G. I. Kanel,
"Spall Fracture: Methodological Aspects, Mechanisms and Governing Factors,"
Int. J. Fract.
163 (1), 173-191 (2010). |
13. | G. I. Kanel,
"Dynamic Strength of Materials,"
Fatigue Frac. Engng Mater. Struct.
22 (11), 1011-1019 (1999). |
14. | V. A. Ogorodnikov, E. Yu. Borovkova, and S. V. Erunov,
"Strength of Some Grades of Steel and Armco Iron under Shock Compression and
Rarefaction at Pressures of 2-200 GPa,"
Fiz. Goreniya i Vzryva
40 (5), 109-117 (2004)
[Comb. Expl. Shock Waves (Engl. Transl.)
40 (5), 597-604 (2004)]. |
15. | G. V. Garkushin, G. I. Kanel, and S. V. Razorenov,
"Influence of Structure Factors on Submicrosecond Strength of Aluminum Alloy D16T,"
Zh. Tekhn. Fiz.
78 (11), 53-59 (2008). |
16. | G. I. Kanel,
"Work of Spalling Fracture,"
Fiz. Goreniya i Vzryva,
No. 4, 84-88 (1982)
[18 (4), 461-464 (1982)]. |
17. | T. Antoun, L. Seaman, D. R. Curran, et al.,
Spall Fracture
(Springer, New York, 2003). |
18. | D. D. Koller, R. S. Hixson, G. T. Gray III, et al., "Influence of
Shock Wave Profile Shape on Dynamically Induced Damage in
High-Purity Copper,"
J. Appl. Phys. 98 (11), 103518
(2005). |
19. | S. J. Fensin, D. R. Jones, E. K. Walker, et al.,
"The Effect of Distribution of Second Phase on Dynamic Damage,"
J. Appl. Phys.
120 (11), 085901 (2016). |
|
Received |
11 February 2017 |
Link to Fulltext |
|
<< Previous article | Volume 52, Issue 4 / 2017 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|