Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-4pp.391-396

Archive of Issues

Total articles in the database: 12855
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4811

<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
D.S. Vavilov, D.A. Indeitsev, B.N. Semenov, and D.Yu. Skubov, "On Structural Transformations in a Material under Nonstationary Actions," Mech. Solids. 52 (4), 391-396 (2017)
Year 2017 Volume 52 Number 4 Pages 391-396
DOI 10.3103/S0025654417040057
Title On Structural Transformations in a Material under Nonstationary Actions
Author(s) D.S. Vavilov (Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia)
D.A. Indeitsev (Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia; Peter the Great St. Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251 Russia; St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia, dmitry.indeitsev@gmail.com)
B.N. Semenov (Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia; Peter the Great St. Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251 Russia; St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034 Russia)
D.Yu. Skubov (Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Bol'shoy pr. 61, St. Petersburg, 199078 Russia; Peter the Great St. Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251 Russia)
Abstract A model of material of complex crystalline structure consisting of two lattices coupled by nonlinear interaction forces that ensure several stable equilibrium configurations is considered. The continuum model is compared with the discrete model whose analysis reveals the effect, which has been observed in high-speed deformation experiments, of decrease in the initial pulse under nonstationary actions.
Keywords structural transformation, nonstationary action, two-component medium, discrete model, continuum model
References
1.  Yu. I. Meshcheryakov, N. I. Zhigacheva, A. K. Divakov, et al., "Transition of Shock-Loaded Metals to a Structurally Unstable State," Zh. Prikl. Mekh. Tekhn. Fiz. 51 (5), 132-146 (2010) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 51 (5), 732-743 (2010)].
2.  Yu. I. Meshcheryakov, N. I. Zhigacheva, A. K. Divakov, et al., "Dynamic Structures in Shock-Loaded Copper," Phys. Rev. B 78 (6), 64301-64316 (2008).
3.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in Condensed Matter (Fizmatlit, Moscow, 2008) [in Russian].
4.  D. A. Indeitzev, V. N. Naumov, and B. N. Semenov, "Dynamic Effects in Materials of Complex Structure," Vestnik Samara Gos. Univ., No. 4, 140-168 (2007).
5.  E. N. Vilchevskaya, E. A. Ivanova, and H. Altenbach, "Description of Liquid-Gas Phase Transition in the Frame of Continuum Mechanics," Continuum Mech. Thermodyn. 26 (2), 221-245 (2014).
6.  E. L. Aero and A. N. Bulygin, "Nonlinear Theory of Localized Waves in Complex Crystal Lattices Treated as Discrete-Continual Systems," Vych. Mekh. Sploshn. Sred 1 (1), 14-30 (2008).
7.  L. I. Slepyan, Unsteady Elastic Waves (Sudostroenie, Leningrad, 1972) [in Russian].
Received 05 November 2016
Link to Fulltext
<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100