| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 52, Issue 2 / 2017 | Next article >> |
M.P. Galanin, M.K. Krylov, A.P. Lototskii, and A.S. Rodin, "Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon," Mech. Solids. 52 (2), 172-183 (2017) |
Year |
2017 |
Volume |
52 |
Number |
2 |
Pages |
172-183 |
DOI |
10.3103/S0025654417020078 |
Title |
Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon |
Author(s) |
M.P. Galanin (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia, galan@keldysh.ru)
M.K. Krylov (State Research Center of Russian Federation Troitsk Institute of Innovative and Thermonuclear Research, ul. Pushkovykh, vlad. 12, Troitsk, Moscow Region, 142190 Russia)
A.P. Lototskii (State Research Center of Russian Federation Troitsk Institute of Innovative and Thermonuclear Research, ul. Pushkovykh, vlad. 12, Troitsk, Moscow Region, 142190 Russia)
A.S. Rodin (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia) |
Abstract |
A method for numerical simulation of the motion of the plane liner in a magnetic compressor based on a combination of the transverse and longitudinal two-dimensional models is proposed. The method permits modeling the interaction of the liner ribbon with the rigid basement for the liner kinematic characteristics close to the experimental ones. Three different model are considered to justify the choice of the mathematical model of an elastoplastic body which would be suitable for solving similar problems. A series of computations is performed, and the results and scope of each of the models are analyzed. |
Keywords |
liner, elastoplastic body, large strains, contact problem |
References |
1. | A. S. Rodin,
Model of Plastic Liner Motion in Magnetic Compressor and Its Application,
Preprint No. 50 (IPM RAN, Moscow, 2009)
[in Russian]. |
2. | M. P. Galanin, A. P. Lototskii, and A. S. Rodin,
Mathematical Simulation of Liner Motion in the Cross-Section of Magnetic Compressor,
Preprint No. 57 (IPM RAN, Moscow, 2009)
[in Russian]. |
3. | M. P. Galanin, A. P. Lototskii, A. S. Rodin, and I. A. Shcheglov,
"Liner Motion in the Cross-Section of Magnetic Compressor,"
Vestink MGTU im. Baumana. Est. Nauki,
No. 2, 65-84 (2010). |
4. | M. P. Galanin, A. P. Lototskii, and A. S. Rodin,
"Liner Motion in Various Cross-Sections of Magnetic Compressor,"
Mat. Model.
22 (10), 35-55 (2010). |
5. | M. P. Galanin, M. K. Krylov, A. P. Lototskii, and A. S. Rodin,
Mathematical Simulation of Magnetic Compressor Operation,
Preprint No. 5
(IPM RAN, Moscow, 2011)
[in Russian]. |
6. | E. V. Grabovskii, V. P. Bakhtin, N. M. Efremov, et al.,
"Experimental and Computational Studies of Magnetic Compressor Flow with Strip Liner
Supplied from a Capacitive Storage,"
Yadern. Fiz. Inzhiniring
4 (2), 136-145 (2013). |
7. | E. V. Grabovskii, V. P. Bakhtin, A. M. Zhitlukhin, et al.,
"Operation of a Magnetic Pulse Compressor with Electrodynamic Acceleration of a Liner,"
Zh. Tekhn. Fiz.
84 (7), 126-135 (2014)
[Tech. Phys. (Engl. Transl.)
59 (7), 1072-1081 (2014)]. |
8. | S. N. Korobeinikov,
Nonlinear Deformation of Solids
(Izdat. SO RAN, Novosibirsk, 2000)
[in Russian]. |
9. | D. Bland,
Nonlinear Dynamical Elasticity
(Blaisdell, London, 1969; Mir, Moscow, 1972). |
10. | V. S. Zarubin and G. N. Kuvyrkin,
Mathematical Models of Continuum Mechanics and Electrodynamics
(Izdat. MGTU im. Baumana, Moscow, 2008)
[in Russian] |
11. | W. Prager,
Introduction to Mechanics of Continua
(Ginn, Boston, 1961; Izdat. Inostr. Lit., Moscow, 1963). |
12. | B. D. Annin and S. N. Korobeinikov,
"Admissible Forms of Elastic Laws of Deformation in Constitutive Relations of Elastoplasticity,"
Sib. Zh. Industr. Mat.
1 (1), 21-34 (1998). |
13. | A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin,
Large Elastoplastic Strains: Theory, Algorithms, Applications
(Nauka, Moscow, 1986)
[in Russian]. |
14. | M. Kleiber,
Incremental Finite Element Modeling in Nonlinear Solid Mechanics
(Ellis Horwood, Chichester, 1989). |
15. | L. Szabó and M. Balla,
"Comparison of Some Stress Rates. II,"
Int. J. Solids Struct.
25 (3), 279-297 (1989). |
16. | T. Belytschko, W. K. Liu, and B. Moran,
Nonlinear Finite Elements for Continua and Structures
(Wiley, Chichester, 2000). |
17. | M. Kojic and K.-J. Bathe,
Inelastic Analysis of Solids and Structures
(Springer, New York, 2005). |
18. | O. Zienkiewicz,
The Finite Element Method in Engineering Science
(McGraw-Hill, New York, 1971; Mir, Moscow, 1975). |
19. | N. N. Malinin,
Applied Theory of Plasticity and Creep
(Mashinostroenie, Moscow, 1968)
[in Russian]. |
|
Received |
05 September 2016 |
Link to Fulltext |
|
<< Previous article | Volume 52, Issue 2 / 2017 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|