Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-1pp.52-61

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
I.A. Soldatenkov, "Analytical Solution of the Contact Problem for a System of Bodies under Collective Wear," Mech. Solids. 52 (1), 52-61 (2017)
Year 2017 Volume 52 Number 1 Pages 52-61
DOI 10.3103/S0025654417010071
Title Analytical Solution of the Contact Problem for a System of Bodies under Collective Wear
Author(s) I.A. Soldatenkov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, iasoldat@gmail.com)
Abstract The contact problem is considered for a system of bodies subject to wear on a common base. The deformation properties of the bodies and the base are described by the Winkler model. The problem is reduced to a system of ordinary differential equations and an integral equation of hereditary type with difference kernel. The solution of the problem is constructed with the use of the Laplace transform. The asymptotics of the solution at large times is studied. The continuity conditions for the contact of each of the bodies with the base are derived.
Keywords contact problem, wear, analytical solution, Laplace transform, asymptotic behavior
References
1.  A. S. Pronikov, Machine Reliability (Mashinostroenie, Moscow, 1978) [in Russian].
2.  I. G. Goryacheva and M. N. Dobychin, "Mechanisms of Roughness Formation in the Wear-In Process," Trenie Iznos 3 (4), 632-642 (1982) [Sov. J. Frict. Wear (Engl. Transl.)].
3.  I. A. Soldatenkov, "The Periodic Contact Problem of the Plane Theory of Elasticity. Taking Friction, Wear and Adhesion into Account," Prikl. Mat. Mekh. 77 (2), 337-351 (2013) [J. Appl. Math. Mech. (Engl. Transl.) 77 (2), 245-255 (2013)].
4.  A. Lyubicheva and I. Soldatenkov, "On the Model for Identification of Wear Law Parameters of Viscoelastic Material Based on Ball-on-Disk Wear Tests," Tribology Int. 55, 77-80 (2012).
5.  I. V. Kragel'skii, M. N. Dobychin, and V. S. Kombalov, Friction and Wear: Calculation Methods (Mashinostroenie, Moscow, 1977; Pergamon, Oxford, 1982).
6.  V. Z. Vlasov and N. N. Leontiev, Beams, Plate, and Shells on an Elastic Foundation (Fizmatgiz, Moscow, 1960) [in Russian].
7.  K. L. Johnson, Contact Mechanics (Univ. Press, Cambridge, 1987; Mir, Moscow, 1989).
8.  V. M. Alexandrov, "Some Contact Problems for the Elastic Layer," Prikl. Mat. Mekh. 27 (4), 758-764 (1963) [J. Appl. Math. Mech. (Engl. Transl.) 27 (4), 1164-1174 (1963)].
9.  Z. M. Levina and D. N. Reshetov, Machine Contact Rigidity (Mashinostroenie, Moscow, 1971) [in Russian].
10.  Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Nauka, Moscow, 1989) [in Russian].
11.  A. V. Manzhirov and A. D. Polyanin, Method for Solving Integral Equations, Reference Book (Faktorial, Moscow, 1999) [in Russian].
12.  B. A. Fuks and V. I. Levin, Functions of Complex Variable and Their Applications (GITTL, Moscow-Leningrad, 1951) [in Russian].
13.  I. A. Soldatenkov, Wear-Contact Problem with Applications in Engineering Wear Calculations (Fizmatkniga, Moscow, 2010) [in Russian].
Received 02 September 2015
Link to Fulltext
<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100