Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2017-4pp.407-416

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
G.V. Garkushin, G.I. Kanel, S.V. Razorenov, and A.S. Savinykh, "Anomaly in the Dynamic Strength of Austenitic Stainless Steel 12Cr19Ni10Ti under Shock Wave Loading," Mech. Solids. 52 (4), 407-416 (2017)
Year 2017 Volume 52 Number 4 Pages 407-416
DOI 10.3103/S0025654417040070
Title Anomaly in the Dynamic Strength of Austenitic Stainless Steel 12Cr19Ni10Ti under Shock Wave Loading
Author(s) G.V. Garkushin (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia)
G.I. Kanel (Joint Institute for High Temperatures of the Russian Academy of Sciences, ul. Izhorskaya 13-2, Moscow, 125412 Russia, kanel@ficp.ac.ru)
S.V. Razorenov (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia)
A.S. Savinykh (Institute for Problems of Chemical Physics of the Russian Academy of Sciences, ul. Akad. Semenova 1, Chernogolovka, Moscow oblast, 142432 Russia; National Research Tomsk State University, pr. Lenina 36, Tomsk, 634050 Russia)
Abstract Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105−106s−1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.
Keywords shock waves, dynamic strength, viscosity, stainless steel, deformation martensite
References
1.  N. F. Morozov and Yu. V. Petrov, Dynamics of Fracture (Izdat. SPbGU, St. Petersburg, 1997; Springer, Berlin-Heidelberg-New York, 2000).
2.  Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966) [in Russian].
3.  G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].
4.  G. I. Kanel, "Resistance of Metals to Spalling Fracture," Fiz. Goreniya i Vzryva, No. 3, 77-84 (1982) [Comb. Expl. Shock Waves (Engl. Transl.) 18 (3), 329-335 (1982)].
5.  E. Zaretsky and M. Kaluzhny, "Fracture Threshold and Shock Induced Strengthening of Stainless Steel," in AIP Conf. Proc. "Shock Compression in Condensed Matter -1995", Vol. 370 (Woodbury, New York, 1996), pp. 627-630.
6.  K. Baumung, H. Bluhm, G. I. Kanel, et al., "Tensile Strength of Five Metals and Alloys in the Nanosecond Load Duration Range at Normal and Elevated Temperatures," Int. J. Impact Engng 25, 631-639 (2001).
7.  A. V. Pavlenko, S. N. Malyugina, D. N. Kazakov, et al., "Plastic Deformation and Spall Fracture of Structural 12Cr18Ni10Ti Steel," in AIP Conf. Proc. 1426 "Shock Compression in Condensed Matter -2011" (Melville, New York, 2012), Vol. 370, pp. 627-630.
8.  S. F. Gnyusov, V. P. Rotstein, A. E. Mayer, et al., "Simulation and Experimental Investigation of the Spall Fracture of 304L Stainless Steel Irradiated by a Nanosecond Relativistic High-Current Electron Beam," Int. J. Fract. 199, 59-70 (2016).
9.  M. A. Meyers, N. N. Thadhani, and S. N. Chang, "Martensitic Transformation Induced by Tensile Stress Pulses," J. Phys. Colloques 49, 355-362 (1988).
10.  S.-N. Chang and M. A. Meyers, "Martensitic Transformation Induced by Tensile Stress Pulse in Fe-22.5wt%Ni-4wt%Mn Alloy," Acta Metal. 36 (4), 1085-1098 (1988).
11.  L. M. Barker and R. E. Hollenbach, "Laser Interferometer for Measuring High Velocities of Reflecting Surface," J. Appl. Phys. 43 (11), 4669-4672 (1972).
12.  G. I. Kanel, "Spall Fracture: Methodological Aspects, Mechanisms and Governing Factors," Int. J. Fract. 163 (1), 173-191 (2010).
13.  G. I. Kanel, "Dynamic Strength of Materials," Fatigue Frac. Engng Mater. Struct. 22 (11), 1011-1019 (1999).
14.  V. A. Ogorodnikov, E. Yu. Borovkova, and S. V. Erunov, "Strength of Some Grades of Steel and Armco Iron under Shock Compression and Rarefaction at Pressures of 2-200 GPa," Fiz. Goreniya i Vzryva 40 (5), 109-117 (2004) [Comb. Expl. Shock Waves (Engl. Transl.) 40 (5), 597-604 (2004)].
15.  G. V. Garkushin, G. I. Kanel, and S. V. Razorenov, "Influence of Structure Factors on Submicrosecond Strength of Aluminum Alloy D16T," Zh. Tekhn. Fiz. 78 (11), 53-59 (2008).
16.  G. I. Kanel, "Work of Spalling Fracture," Fiz. Goreniya i Vzryva, No. 4, 84-88 (1982) [18 (4), 461-464 (1982)].
17.  T. Antoun, L. Seaman, D. R. Curran, et al., Spall Fracture (Springer, New York, 2003).
18.  D. D. Koller, R. S. Hixson, G. T. Gray III, et al., "Influence of Shock Wave Profile Shape on Dynamically Induced Damage in High-Purity Copper," J. Appl. Phys. 98 (11), 103518 (2005).
19.  S. J. Fensin, D. R. Jones, E. K. Walker, et al., "The Effect of Distribution of Second Phase on Dynamic Damage," J. Appl. Phys. 120 (11), 085901 (2016).
Received 11 February 2017
Link to Fulltext https://link.springer.com/article/10.3103/S0025654417040070
<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100