Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-4pp.353-363

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
B.D. Annin, A.Yu. Vlasov, Yu.V. Zakharov, and K.G. Okhotkin, "Study of Static and Dynamic Stability of Flexible Rods in a Geometrically Nonlinear Statement," Mech. Solids. 52 (4), 353-363 (2017)
Year 2017 Volume 52 Number 4 Pages 353-363
DOI 10.3103/S002565441704001X
Title Study of Static and Dynamic Stability of Flexible Rods in a Geometrically Nonlinear Statement
Author(s) B.D. Annin (Lavrent'ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences, pr. akad. Lavrentyeva 15, Novosibirsk, 630090 Russia)
A.Yu. Vlasov (Siberian State Aerospace University, pr. im. gazety "Krasnoyarskiy rabochiy" 31, Krasnoyarsk, 660014 Russia)
Yu.V. Zakharov (Siberian State Aerospace University, pr. im. gazety "Krasnoyarskiy rabochiy" 31, Krasnoyarsk, 660014 Russia)
K.G. Okhotkin (Academician M.F. Reshetnev Information Satellite Systems, ul. Lenina 52, Zheleznogorsk, Krasnoyarsk region, 662972 Russia; Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences," ul. Akademgorodok 50, Krasnoyarsk, 660036 Russia, okg2000@mail.ru)
Abstract We study static and dynamic stability problems for a thin flexible rod subjected to axial compression with the geometric nonlinearity explicitly taken into account. In the case of static action of a force, the critical load and the bending shapes of the rod were determined by Euler. Lavrent'ev and Ishlinsky discovered that, in the case of rod dynamic loading significantly greater than the Euler static critical load, there arise buckling modes with a large number of waves in the longitudinal direction. Lavrent'ev and Ishlinsky referred to the first loading threshold discovered by Euler as the static threshold, and the subsequent ones were called dynamic thresholds; they can be attained under impact loading if the pulse growth time is less than the system relaxation time. Later, the buckling mechanism in this case and the arising parametric resonance were studied in detail by Academician Morozov and his colleagues.

In this paper, we complete and develop the approach to studying dynamic rod systems suggested by Morozov; in particular, we construct exact and approximate analytic solutions by using a system of special functions generalizing the Jacobi elliptic functions. We obtain approximate analytic solutions of the nonlinear dynamic problem of flexible rod deformation under longitudinal loading with regard to the boundary conditions and show that the analytic solution of static rod system stability problems in a geometrically nonlinear statement permits exactly determining all possible shapes of the bent rod and the complete system of buckling thresholds. The study of approximate analytic solutions of dynamic problems of nonlinear vibrations of rod systems loaded by lumped forces after buckling in the deformed state allows one to determine the vibration frequencies and then the parametric resonance thresholds.
Keywords flexible rod, geometric nonlinearity, static stability, dynamic stability
References
1.  E. P. Popov, Nonlinear Static Problems for Thin Beams (OGIZ, Leningrad-Moscow, 1948) [in Russian].
2.  E. P. Popov, Theory and Calculation of Flexible Elastic Rods (Nauka, Moscow, 1986) [in Russian].
3.  S. V. Levyakov, "States of Equilibrium and Secondary Buckling of a Straight Rod Loaded by an Axial Force," Zh. Prikl. Mekh. Tekhn. Fiz 42 (2), 153-159 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (2), 321-327 (2001)].
4.  S. P. Timoshenko, Stability of Rods, Plates, and Shells (Nauka, Moscow, 1971) [in Russian].
5.  A. S. Vol'mir, Stability of Deformable Systems (Nauka, Moscow, 1967) [in Russian].
6.  V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1989) [in Russian].
7.  Ya. G. Panovko and I. I. Gubanova, Stability and Vibrations of Elastic Systems (Nauka, Moscow, 1987) [in Russian].
8.  M. A. Lavrent'ev and A. Yu. Ishlinsky, "Dynamic Buckling Modes of Elastic Systems," Dokl. Akad. Nauk SSSR 64 (6), 779-782 (1949).
9.  L. Collatz, Eigenvalue Problems with Engineering Applications (Akad. Verlag, Leipzig, 1963; Fizmatgiz, Moscow, 1968).
10.  L. I. Shkutin, "Numerical Analysis of the Branched Forms of Bending for a Rod," Zh. Prikl. Mekh. Tekhn. Fiz. 42 (2), 141-147 (2001) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 42 (2), 310-315 (2001)].
11.  Yu. V. Zakharov and K. G. Okhotkin, "Nonlinear Bending of Thin Elastic Rods," Zh. Prikl. Mekh. Tekhn. Fiz. 43 (5), 124-131 (2002) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 43 (5), 739-744 (2002)].
12.  Yu. V. Zakharov and K. G. Okhotkin, "Elliptic Functions and Problems of Bending of Thin Rods and Plates," Vestnik KrasGU, No. 3, 44-52 (2004).
13.  A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].
14.  H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 3 (McGraw Hill, New York, 1955; Nauka, Moscow, 1967).
15.  E. L. Ince, "The Periodic Lamé Functions," Proc. Roy. Soc. Edinburgh 40, 47-63 (1940).
16.  A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, "Buckling Problem for a Rod Longitudinally Compressed by a Force Smaller Than the Euler Critical Force," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 28-39 (2016) [Mech. Solids (Engl. Transl.) 51 (3), 263-272 (2016)].
17.  N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, "Ishlinsky-Lavrent'ev Problem. Development of the idea," in Proc. XI All-Russia Meeting in Fundamental Problems of Theoretical and Appllied Mechanics, Kazan, August 20-24. 2015 (KFU, Kazan, 2015), pp. 2636-2638 [in Russian].
18.  N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, "The Ishlinsky-Lavrent'ev Problem at the Initial Stage of Motion," Dokl. Ross. Akad. Nauk 463 (5), 543-546 (2015) [Dokl. Phys. (Engl. Transl.) 60 (8), 368-371 (2015)].
19.  N. F. Morozov, A. K. Belyaev, P. E. Tovstik, and T. P. Tovstik, "Initial Stage of Motion in the Lavrent'ev-Ishlinsky Problem on Longitudinal Shock on a Rod," Dokl. Ross. Akad. Nauk 465 (3), 302-306 (2015) [Dokl. Phys. (Engl. Transl.) 60 (11), 519-523 (2015)].
20.  N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, "Stability of a Rod in Long-Term Axial Compression," Probl. Prochn. Plastichn. 77 (1), 40-48 (2015).
Received 03 April 2017
Link to Fulltext
<< Previous article | Volume 52, Issue 4 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100