Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-3pp.254-265

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 3 / 2017 | Next article >>
A.N. Danilin, "Vibrations of Mechanical Systems with Energy Dissipation Hysteresis," Mech. Solids. 52 (3), 254-265 (2017)
Year 2017 Volume 52 Number 3 Pages 254-265
DOI 10.3103/S0025654417030037
Title Vibrations of Mechanical Systems with Energy Dissipation Hysteresis
Author(s) A.N. Danilin (Institute of Applied Mechanics of the Russian Academy of Sciences, Leningradskii pr. 7, Moscow, 125040 Russia; Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia, andanilin@yandex.ru)
Abstract A phenomenological approach which we refer to as kinematic is proposed to describe hysteresis; according to this approach, the force and kinematic parameters of a mechanical system are related by a first-order ordinary differential equation. The right-hand side is chosen in the class of functions ensuring the asymptotic approach of the solution to the curves of the enveloping (limit) hysteresis cycle of steady-state vibrations. The coefficients of the equation are identified by experimental data for the enveloping cycle. The proposed approach permits describing the hysteresis trajectory under the conditions of unsteady vibrations with an arbitrary starting point inside the region of the enveloping cycle. As an example, we consider the problem on forced vibrations of a pendulum-type damper of low-frequency vibrations.
Keywords unsteady vibrations, energy dissipation hysteresis, kinematic approach, enclosing cycle, parameter identification, low-frequency vibration damper
References
1.  F. Preisach, "Über die magnetische Nachwirkung," Zeitschrift für Physik 94 (5), 277-302 (1935).
2.  S. F. H. Parker, C. A. Faunce, P. J. Grundy, et al., "Preisach Modeling of Magnetization Changes in Steel," J. Magn. Magn. Mater. 145, 51-56 (1995).
3.  E. D. Torre, "A Preisach Model for Accommodation," IEEE Trans. Magn. 30 (5), 2701-2707 (1994).
4.  G. Shadrov, Intercrystalline Magnetic Interaction and Properties of Nanostructures (Izdat. Tsentr BGU, Minsk, 2010) [in Russian].
5.  D. Yu. Borin, P. Mikhailov, and A. M. Bazinenkov, "Modeling of Magnetorheological Choke of the Modulus of Linear Superaccurate Displacements," Vestnik MGTU im. N.E. Baumana. Mashinostr., No. 4, 58-71 (2007).
6.  G. Ya. Bezlyud'ko, S. A. Volokhov, and R. N. Solomakha, "Variations in the Magnetic State of the Steel Structure Metal under Mechanical Actions," Tekhn. Diagn Nerazrush. Kontrol, No. 3, 42-47 (2006) [Tech. Diagn. NDT (Engl. Transl.)].
7.  A. B. Lebedev, "Amplitude-Dependent Elastic-Modulus Defect in the Main Dislocation-Hysteresis Models," Fiz. Tverd. Tela 41 (7), 1214-1222 (1999) [Phys. Solid State (Engl. Transl.) 41 (7), 1105-1111 (1999)].
8.  A. Mielke and T. Roubícek, "A Rate-Independent Model for Inelastic Behavior of Shape-Memory Alloys," Multiscale Model. Simul. 1 (4), 571-597 (2003).
9.  M. O. Rieger, "Young Measure Solutions for Nonconvex Elastodynamics," SIAM J. Math. Anal. 34 (6), 1380-1398 (2003).
10.  M. O. Rieger, "A Model for Hysteresis in Mechanics Using Local Minimizers of Young Measures," Progr. Nonlin. Diff. Equat. Their Appl. 63, 403-414 (2005).
11.  A. Mielke, "Analysis of Energetic Models for Rate-Independent Materials," Proc. ICM. 3, 817-828 (2002).
12.  M. Reiner, Rheology (Nauka, Moscow, 1965) [in Russian].
13.  X. Gong, Ya. Xu, S. Xuan, et al., "The Investigation on the Nonlinearity of Plasticine-Like Magnetorheological Material under Oscillatory Shear Rheometry," J. Rheol. 56 (6), 1375-1391 (2012).
14.  Z. Tong, W. X. Sun, Y. R. Yang, et al., "Large Amplitude Oscillatory Shear Rheology for Nonlinear Viscoelasticity in Hectorite Suspensions Containing Polyethylene Glycol," Polymer 52 (6), 1402-1409 (2011).
15.  H. T. Lim, K. H. Ahn, J. S. Hong, and K. Hyun, "Nonlinear Viscoelasticity of Polymer Nanocomposites under Large Amplitude Oscillatory Shear Flow," J. Rheol. 57 (3), 767-789 (2013).
16.  A. N. Danilin, Yu. G. Yanovskii, N. A. Semenov, and A. D. Shalashilin, "Kinematic Model of Rheological Behavior of Non-Newtonian Liquids under the Conditions of Unsteady Cyclic Loading," Mekh. Kompoz. Mater. Konstr. 18 (3), 369-383 (2012).
17.  I. V. Mishustin and A. A. Movchan, "Modeling of Phase and Structure Transformations in Shape Memory Alloys under Nonmonotonically Varying Stresses," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 37-53 (2014) [Mech. Solids (Engl. Transl.) 49 (1), 27-39 (2014)].
18.  I. V. Mishustin and A. A. Movchan, "Analog of the Plastic Flow Theory for Describing Martensitic Inelasticity Strains in Shape Memory Alloys," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 78-95 (2015) [Mech. Solids (Engl. Transl.) 50 (2), 176-190 (2015)].
19.  Ya. G. Panovko, Internal Friction in Vibrations of Elastic Systems (Fizmatgiz, Moscow, 1960) [in Russian].
20.  N. N. Davidenkov, "On Energy Dissipation in Vibrations," Zh. Tekhn. Fiz. 8 (6), 15-21 (1938).
21.  G. S. Pisarenko, Energy Dissipation in Mechanical Vibrations (Izdat. Akad. Nauk UkrSSR, Kiev, 1962) [in Russian].
22.  N. P. Plakhtienko, "Methods of Identification of Nonlinear Mechanical Vibrating Systems," Prikl. Mekh. 36 (12), 38-68 (2000) [Int. Appl. Mech. (Engl. Transl.) 36 (12), 1565-1594 (2000)].
23.  A. N. Danilin and A. P. Zakharov, "Approach to Description of Hysteresis by Using the Data of a Series of Standard Experiments Illustrated by an Example of Conductor Galloping Damper," Mekh. Komp. Mater. Konstr. 14 (4), 604-622 (2008).
24.  A. N. Danilin and V. N. Shalashilin, "A Method to Identify Hysteresis by an Example of an Antigalloping Device," Prikl. Mekh. 46 (5), 115-124 (2010) [Int. Appl. Mech. (Engl. Transl.) 46 (5), 588-595 (2010)].
25.  M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis (Nauka, Moscow, 1983) [in Russian].
26.  M. A. Krasnosel'skii, A. Pokrovskii, D. I. Rachinskii, and I. D. Maergoiz, "Operators of Hysteresis Nonlinearities Generated by Continual Systems of Relays," Avtomat. Telemekh., No. 7, 49-60 (1994) [Aotomat. Remote Control (Engl. Transl.)].
27.  D. I. Rachinskii, Mathematical Methods for Studying Vibrations in Systems with Complex Hysteresis Nonlinearities, Doctoral Dissertation in Mathematics and Physics (Moscow, 2002) [in Russian].
28.  A. Visintin, Differential Models of Hysteresis, in Applied Mathematical Sciences (Springer, Berlin, 1995).
29.  R. C. Smith, Smart Material Systems: Model Development (SIAM, Philadelphia, 2005).
30.  I. Nova and I. Zemanek, "Analytical Model with Flexible Parameters for Dynamic Hysteresis Loops Modeling," J. Electr. Engng 61 (7), 46-49 (2010).
31.  A. A. Lukichev and V. V. Il'ina, "Simple Mathematical Model of Hysteresis Loop for Nonlinear Materials," Izv. SamNTs Ross. Akad. Nauk 13 (4), 39-44 (2011).
32.  Roel Leenen, The Modelling and Identification of an Hysteretic System. The Wire-Rope as a Nonlinear Shock Vibration Isolator URL: http://alexandria.tue.nl/repository/books/639963.pdf (March 13, 2015).
33.  A. M. Soloviev and M. E. Semenov, "Artificial Neural Networks with Hysteresis Activation Function," in Proc. of 16th All-Russian Sci.-Techn. Conf. "Neuro-Informatics-2014", Vol. 1 (NIYaU MIFI, Moscow, 2014), pp. 31-40 [in Russian].
34.  V,. S. Bondar', V. V. Danshin, and D. A. Makarov, "Mathematical Modeling of Deformation Processes and Damage Accumulation under Cyclic Loadings," Vestnik PNIPU. Mekh., No. 2, 125-152 (2014).
35.  I. A. Volkov, I. Yu. Gordleeva, and I. S. Tarasov, "Modeling of Cyclic Elastoplastic Deformation of Structural Steels under Complex Loading," Vestnik Nauchn.-Tekhnich. Razvit., No. 6, 26-39 (2008).
36.  A. S. Semenov, B. E. Mel'nikov, and M. Yu. Gorokhov, "Cyclic Instability in Computations of Large Elastoplastic Deformations," Nauchno-Tekhn. Vedomosti SPbGTU, No. 3, 129-138 (2003).
37.  M. Yu. Gorokhov, A. S. Semenov, and B. E. Mel'nikov, "Cyclic Instability in Computations of Large Elastoplastic Deformations Using the Material Models with Kinematic Strengthening," in "Nonlinear Problems in Mechanics and Solid State Physics. Issue 6" (Izdat. SPbGU, St. Petersburg, 2002), pp. 79-91 [in Russian].
38.  A. N. Danilin and K. S. Kozlov, "Modeling of Unsteady Vibrations of Vibration Dampers with Regard to Energy Dissipation Hysteresis," Mekh. Kompoz. Mater. Konstr. 19 (1), 34-47 (2013).
39.  D. Sauter and P. Hagedorn, "On the Hysteresis of Wire Cables in Stockbridge Dampers," Int. J. Non-Lin. Mech. 37, 1453-1459 (2002).
40.  S. Taketomi and S. Tikadzumi, Magnetic Liquids (Nikkan Kogyo Shimbun, 1988; Mir, Moscow, 1993).
Received 21 April 2015
Link to Fulltext
<< Previous article | Volume 52, Issue 3 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100