| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 52, Issue 3 / 2017 | Next article >> |
A.N. Danilin, "Vibrations of Mechanical Systems with Energy Dissipation Hysteresis," Mech. Solids. 52 (3), 254-265 (2017) |
Year |
2017 |
Volume |
52 |
Number |
3 |
Pages |
254-265 |
DOI |
10.3103/S0025654417030037 |
Title |
Vibrations of Mechanical Systems with Energy Dissipation Hysteresis |
Author(s) |
A.N. Danilin (Institute of Applied Mechanics of the Russian Academy of Sciences, Leningradskii pr. 7, Moscow, 125040 Russia; Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia, andanilin@yandex.ru) |
Abstract |
A phenomenological approach which we refer to as kinematic is proposed to describe hysteresis; according to this approach, the force and kinematic parameters of a mechanical system are related by a first-order ordinary differential equation. The right-hand side is chosen in the class of functions ensuring the asymptotic approach of the solution to the curves of the enveloping (limit) hysteresis cycle of steady-state vibrations. The coefficients of the equation are identified by experimental data for the enveloping cycle. The proposed approach permits describing the hysteresis trajectory under the conditions of unsteady vibrations with an arbitrary starting point inside the region of the enveloping cycle. As an example, we consider the problem on forced vibrations of a pendulum-type damper of low-frequency vibrations. |
Keywords |
unsteady vibrations, energy dissipation hysteresis, kinematic approach, enclosing cycle, parameter identification, low-frequency vibration damper |
References |
1. | F. Preisach,
"Über die magnetische Nachwirkung,"
Zeitschrift für Physik
94 (5), 277-302 (1935). |
2. | S. F. H. Parker, C. A. Faunce, P. J. Grundy, et al.,
"Preisach Modeling of Magnetization Changes in Steel,"
J. Magn. Magn. Mater.
145, 51-56 (1995). |
3. | E. D. Torre,
"A Preisach Model for Accommodation,"
IEEE Trans. Magn.
30 (5), 2701-2707 (1994). |
4. | G. Shadrov,
Intercrystalline Magnetic Interaction and Properties of Nanostructures
(Izdat. Tsentr BGU, Minsk, 2010)
[in Russian]. |
5. | D. Yu. Borin, P. Mikhailov, and A. M. Bazinenkov,
"Modeling of Magnetorheological Choke of the Modulus of Linear Superaccurate Displacements,"
Vestnik MGTU im. N.E. Baumana. Mashinostr.,
No. 4, 58-71 (2007). |
6. | G. Ya. Bezlyud'ko, S. A. Volokhov, and R. N. Solomakha,
"Variations in the Magnetic State of the Steel Structure Metal under Mechanical Actions,"
Tekhn. Diagn Nerazrush. Kontrol,
No. 3, 42-47 (2006)
[Tech. Diagn. NDT (Engl. Transl.)]. |
7. | A. B. Lebedev,
"Amplitude-Dependent Elastic-Modulus Defect in the Main Dislocation-Hysteresis Models,"
Fiz. Tverd. Tela
41 (7), 1214-1222 (1999)
[Phys. Solid State (Engl. Transl.)
41 (7), 1105-1111 (1999)]. |
8. | A. Mielke and T. Roubícek,
"A Rate-Independent Model for Inelastic Behavior of Shape-Memory Alloys,"
Multiscale Model. Simul.
1 (4), 571-597 (2003). |
9. | M. O. Rieger,
"Young Measure Solutions for Nonconvex Elastodynamics,"
SIAM J. Math. Anal.
34 (6), 1380-1398 (2003). |
10. | M. O. Rieger,
"A Model for Hysteresis in Mechanics Using Local Minimizers of Young Measures,"
Progr. Nonlin. Diff. Equat. Their Appl.
63, 403-414 (2005). |
11. | A. Mielke,
"Analysis of Energetic Models for Rate-Independent Materials,"
Proc. ICM.
3, 817-828 (2002). |
12. | M. Reiner,
Rheology
(Nauka, Moscow, 1965)
[in Russian]. |
13. | X. Gong, Ya. Xu, S. Xuan, et al.,
"The Investigation on the Nonlinearity of Plasticine-Like Magnetorheological Material
under Oscillatory Shear Rheometry,"
J. Rheol.
56 (6), 1375-1391 (2012). |
14. | Z. Tong, W. X. Sun, Y. R. Yang, et al.,
"Large Amplitude Oscillatory Shear Rheology for Nonlinear Viscoelasticity
in Hectorite Suspensions Containing Polyethylene Glycol,"
Polymer
52 (6), 1402-1409 (2011). |
15. | H. T. Lim, K. H. Ahn, J. S. Hong, and K. Hyun,
"Nonlinear Viscoelasticity of Polymer Nanocomposites
under Large Amplitude Oscillatory Shear Flow,"
J. Rheol.
57 (3), 767-789 (2013). |
16. | A. N. Danilin, Yu. G. Yanovskii, N. A. Semenov, and A. D. Shalashilin,
"Kinematic Model of Rheological Behavior of Non-Newtonian Liquids
under the Conditions of Unsteady Cyclic Loading,"
Mekh. Kompoz. Mater. Konstr.
18 (3), 369-383 (2012). |
17. | I. V. Mishustin and A. A. Movchan,
"Modeling of Phase and Structure Transformations in Shape Memory Alloys
under Nonmonotonically Varying Stresses,"
Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela,
No. 1, 37-53 (2014)
[Mech. Solids (Engl. Transl.)
49 (1), 27-39 (2014)]. |
18. | I. V. Mishustin and A. A. Movchan,
"Analog of the Plastic Flow Theory for Describing Martensitic Inelasticity Strains
in Shape Memory Alloys,"
Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela,
No. 2, 78-95 (2015)
[Mech. Solids (Engl. Transl.)
50 (2), 176-190 (2015)]. |
19. | Ya. G. Panovko,
Internal Friction in Vibrations of Elastic Systems
(Fizmatgiz, Moscow, 1960)
[in Russian]. |
20. | N. N. Davidenkov,
"On Energy Dissipation in Vibrations,"
Zh. Tekhn. Fiz.
8 (6), 15-21 (1938). |
21. | G. S. Pisarenko,
Energy Dissipation in Mechanical Vibrations
(Izdat. Akad. Nauk UkrSSR, Kiev, 1962)
[in Russian]. |
22. | N. P. Plakhtienko,
"Methods of Identification of Nonlinear Mechanical Vibrating Systems,"
Prikl. Mekh.
36 (12), 38-68 (2000)
[Int. Appl. Mech. (Engl. Transl.)
36 (12), 1565-1594 (2000)]. |
23. | A. N. Danilin and A. P. Zakharov,
"Approach to Description of Hysteresis by Using the Data of a Series of Standard Experiments
Illustrated by an Example of Conductor Galloping Damper,"
Mekh. Komp. Mater. Konstr.
14 (4), 604-622 (2008). |
24. | A. N. Danilin and V. N. Shalashilin,
"A Method to Identify Hysteresis by an Example of an Antigalloping Device,"
Prikl. Mekh.
46 (5), 115-124 (2010)
[Int. Appl. Mech. (Engl. Transl.)
46 (5), 588-595 (2010)]. |
25. | M. A. Krasnosel'skii and A. V. Pokrovskii,
Systems with Hysteresis
(Nauka, Moscow, 1983)
[in Russian]. |
26. | M. A. Krasnosel'skii, A. Pokrovskii, D. I. Rachinskii, and I. D. Maergoiz,
"Operators of Hysteresis Nonlinearities Generated by Continual Systems of Relays,"
Avtomat. Telemekh.,
No. 7, 49-60 (1994)
[Aotomat. Remote Control (Engl. Transl.)]. |
27. | D. I. Rachinskii, Mathematical Methods for Studying Vibrations in Systems with Complex Hysteresis Nonlinearities,
Doctoral Dissertation in Mathematics and Physics (Moscow, 2002) [in Russian]. |
28. | A. Visintin,
Differential Models of Hysteresis,
in Applied Mathematical Sciences
(Springer, Berlin, 1995). |
29. | R. C. Smith,
Smart Material Systems: Model Development
(SIAM, Philadelphia, 2005). |
30. | I. Nova and I. Zemanek,
"Analytical Model with Flexible Parameters for Dynamic Hysteresis Loops Modeling,"
J. Electr. Engng
61 (7), 46-49 (2010). |
31. | A. A. Lukichev and V. V. Il'ina,
"Simple Mathematical Model of Hysteresis Loop for Nonlinear Materials,"
Izv. SamNTs Ross. Akad. Nauk
13 (4), 39-44 (2011). |
32. | Roel Leenen,
The Modelling and Identification of an Hysteretic System.
The Wire-Rope as a Nonlinear Shock Vibration Isolator
URL: http://alexandria.tue.nl/repository/books/639963.pdf (March 13, 2015). |
33. | A. M. Soloviev and M. E. Semenov,
"Artificial Neural Networks with Hysteresis Activation Function,"
in Proc. of 16th All-Russian Sci.-Techn. Conf. "Neuro-Informatics-2014", Vol. 1
(NIYaU MIFI, Moscow, 2014),
pp. 31-40
[in Russian]. |
34. | V,. S. Bondar', V. V. Danshin, and D. A. Makarov,
"Mathematical Modeling of Deformation Processes
and Damage Accumulation under Cyclic Loadings,"
Vestnik PNIPU. Mekh.,
No. 2, 125-152 (2014). |
35. | I. A. Volkov, I. Yu. Gordleeva, and I. S. Tarasov,
"Modeling of Cyclic Elastoplastic Deformation of Structural Steels under Complex Loading,"
Vestnik Nauchn.-Tekhnich. Razvit.,
No. 6, 26-39 (2008). |
36. | A. S. Semenov, B. E. Mel'nikov, and M. Yu. Gorokhov,
"Cyclic Instability in Computations of Large Elastoplastic Deformations,"
Nauchno-Tekhn. Vedomosti SPbGTU,
No. 3, 129-138 (2003). |
37. | M. Yu. Gorokhov, A. S. Semenov, and B. E. Mel'nikov,
"Cyclic Instability in Computations of Large Elastoplastic Deformations
Using the Material Models with Kinematic Strengthening,"
in "Nonlinear Problems in Mechanics and Solid State Physics. Issue 6"
(Izdat. SPbGU, St. Petersburg, 2002),
pp. 79-91
[in Russian]. |
38. | A. N. Danilin and K. S. Kozlov, "Modeling of Unsteady Vibrations
of Vibration Dampers with Regard to Energy Dissipation
Hysteresis," Mekh. Kompoz. Mater. Konstr. 19 (1), 34-47
(2013). |
39. | D. Sauter and P. Hagedorn,
"On the Hysteresis of Wire Cables in Stockbridge Dampers,"
Int. J. Non-Lin. Mech.
37, 1453-1459 (2002). |
40. | S. Taketomi and S. Tikadzumi,
Magnetic Liquids
(Nikkan Kogyo Shimbun, 1988; Mir, Moscow, 1993). |
|
Received |
21 April 2015 |
Link to Fulltext |
|
<< Previous article | Volume 52, Issue 3 / 2017 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|