Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-3pp.243-253

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 3 / 2017 | Next article >>
A.G. Petrov, "Rotation of the Apparent Vibration Plane of a Swinging Spring at the 1:1:2 Resonance," Mech. Solids. 52 (3), 243-253 (2017)
Year 2017 Volume 52 Number 3 Pages 243-253
DOI 10.3103/S0025654417030025
Title Rotation of the Apparent Vibration Plane of a Swinging Spring at the 1:1:2 Resonance
Author(s) A.G. Petrov (Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, petrovipmech@gmail.com)
Abstract Nonlinear spatial vibrations of a mass point on a weightless elastic suspension (pendulum on a spring) are considered. The frequency of vertical vibrations is assumed to be equal to the doubled swinging frequency (the 1:1:2 resonance). In this case, as numerical calculations and experiments show, the vertical vibrations are unstable, which leads to the vertical vibration energy transfer to the pendulum swinging energy. The vertical vibrations of the mass point decay and, after a certain time period, the pendulum starts swinging in a certain vertical plane. This swinging is also unstable, which results in the reverse energy transfer into the vertical vibration mode. The vertical vibrations are again repeated. But after the second transfer of the vertical vibration energy to the pendulum swinging energy, the apparent plane of vibrations rotates by a certain angle. These effects are described analytically; namely, the energy transfer period, the time variations in the amplitudes of both modes, and the variations in the angle of the apparent vibration plane are determined.

An asymptotic solution is also constructed for the mass point trajectory in the orbit elements. In projection on the horizonal plane, the mass point moves in a nearly elliptic trajectory. The ellipse semiaxes slowly vary with time, so that their product remains constant, and the major semiaxis slowly rotates at a constant sectorial velocity. The obtained analytic time dependence of the ellipse semiaxes and the precession angle agree well with the results of numerical calculations.
Keywords swinging spring, resonance, vibration plane rotation
References
1.  A. A. Vitt and G. S. Gorelik, "Elastic Pendulum Oscillations as an Example of Oscillations Two Parametrically Connected Linear Systems," Zh. Tekhn. Fiz. 3 (2-3), 294-307 (1933).
2.  G. S. Gorelik, Oscillations and Waves (Fizmatilit, Moscow, 1959) [in Russian].
3.  E. Fermi, "Über den Ramaneffect des Kohlendioxyds," Zs. F. Phys. 71 (23), 250-259 (1931).
4.  V. M. Starzhinskii, Applied Methods of Nonlinear Vibrations (Nauka, Moscow, 1977) [in Russian].
5.  M. N. Zaripov and A. G. Petrov, "Nonlinear Vibrations of a Swinging String," Dokl. Ross. Akad. Nauk 399 (3), 347-352 (2004) [Dokl. Phys. (Engl. Transl.) 49 (11), 691-696 (2004)].
6.  A. G. Petrov, "Nonlinear Vibrations of a Swinging Spring at Resonance," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 18-28 (2006) [Mech. Solids (Engl. Transl.) 41 (5), 13-22 (2006)].
7.  A. G. Petrov and M. M. Shunderyuk, "On Nonlinear Vibrations of a Heavy Mass Point on a Spring," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 27-40 (2010) [Mech. Solids (Engl. Transl.) 45 (2), 176-186 (2010)].
8.  A. G. Petrov and A. V. Fomichev, "Nonlinear 3D Vibrations of a Heavy Mass Point on a Spring at Resonance," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 15-26 (2008) [Mech. Solids (Engl. Trans) 43 (5), 698-708 (2008)].
9.  V. Ph. Zhuravlev, "Invariant Normalization of Non-Autonomous Hamiltonian Systems," Prikl. Mat. Mekh. 66v(3), 356-365 (2002) [J. Appl. Math. Mech. (Engl. Transl.) 66 (3), 347-355 (2002)].
10.  A. G. Petrov, "Symmetrization of Hamiltonians," in Theoretical Mechanics, Collected papers, No. 29 (Izdat. MPI, Moscow, 2015), pp. 66-76 [in Russian].
11.  V. Ph. Zhuravlev, A. G. Petrov, and M. M. Shunderyuk, Selected Problems of Hamiltonian Mechanics (Lenand, Moscow, 2015) [in Russian].
12.  E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part 2 (Gos.-Tekh.-Teor. Izdat., Moscow, 1934) [in Russian].
13.  A. G. Petrov, "Invariant Normalization of Non-Autonomous Hamiltonian Systems," Prikl. Mat. Mekh. 68 (3), 402-413 (2004) [J. Appl. Math. Mech. (Engl. Transl.) 68 (3), 357-367 (2004)].
14.  V. Ph. Zhuravlev, "A Controlled Foucault Pendulum as a Model of a Class of Free Gyros," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 27-35 (1997) [Mech. Solids (Engl. Transl.) 32 (6), 21-28 (1997)].
Received 27 January 2016
Link to Fulltext
<< Previous article | Volume 52, Issue 3 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100