Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-2pp.200-211

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 2 / 2017 | Next article >>
I. Gyunal, V.N. Paimushin, V.A. Firsov, and V.M. Shishkin, "Identification of the Damping Properties of Rigid Isotropic Materials by Studying the Damping Flexural Vibrations of Test Specimens," Mech. Solids. 52 (2), 200-211 (2017)
Year 2017 Volume 52 Number 2 Pages 200-211
DOI 10.3103/S0025654417020108
Title Identification of the Damping Properties of Rigid Isotropic Materials by Studying the Damping Flexural Vibrations of Test Specimens
Author(s) I. Gyunal (Tupolev Kazan National Research Technological University, ul. Karla Marksa 68, Kazan, 420015 Russia)
V.N. Paimushin (Tupolev Kazan National Research Technological University, ul. Karla Marksa 68, Kazan, 420015 Russia, vpaymushin@mail.ru)
V.A. Firsov (Tupolev Kazan National Research Technological University, ul. Karla Marksa 68, Kazan, 420015 Russia)
V.M. Shishkin (Vyatka State University, ul. Moskovskaya 36, Kirov, 610000 Russia)
Abstract A technique for determining the damping properties of a rigid isotropic material from the experimental data on the damping capacity of elongated cantilever-fixed test specimens due to the internal and external aerodynamic damping is proposed. The following two methods for eliminating the aerodynamic damping component are considered: the extrapolation of the data on the damping capacity of a series of test specimens of different widths to the point corresponding to the zero width and the theoretical-experimental approach. The damping properties of the material are determined by the vibration logarithmic decrement depending on the amplitude of the linear deformation. This dependence is represented by a power polynomial. The polynomial coefficients are determined from the minimum condition of the goal function for the positive logarithmic decrement of the material vibrations. These coefficients are sought at the reference point by repeatedly solving the direct problem of determining the damping capacity of the test specimen from the given damping properties of the material. An example is considered to illustrate the identification of the damping properties of steel St.3.
Keywords test specimen, vibrations, damping, finite element, goal function, experimental facility
References
1.  ASTM E-756. Standard Test Method for Measuring Vibration Damping Properties of Materials (American Society for Testing and Materials, New York, 2002).
2.  V. N. Paimushin, V. A. Firsov, I. Gyunal, and A. G. Egorov, "Theoretical-Experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 1. Experimental Basis," Mekh. Komp. Mater. 50 (2), 185-198 (2014) [Mech. Comp. Mater. (Engl. Transl.) 50 (2), 127-136 (2014)].
3.  V. N. Paimushin, V. A. Firsov, I. Gyunal, et al., "Theoretical-Experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 3. Identification of the Characteristics of Internal Damping," Mekh. Komp. Mater. 50 (5), 863-902 (2014) [Mech. Comp. Mater. (Engl. Transl.) 50 (5), 633-646 (2014)].
4.  A. G. Egorov, A. M. Kamalutdinov, A. N. Nuriev, and V. N. Paimushin, "Theoretical-Experimental Method for Determining the Parameters of Damping Based on the Study of Damped Flexural Vibrations of Test Specimens. 2. Aerodynamic Component of Damping," Mekh. Komp. Mater. 50 (3), 379-396 (2014) [Mech. Comp. Mater. (Engl. Transl.) 50 (3), 267-278 (2014)].
5.  T. Shoup, A Practical Guide to Computer Methods for Engineers (Prentice Hall, Englewood Cliffs, New Jersey, 1979; Mir, Moscow, 1982).
6.  V. A. Postnov and I. Ya. Kharkhurim, Finite Element Method in Ship Structure Computations (Sudostroenie, Leningrad, 1974) [in Russian].
7.  R. W. Clough and J. Penzien, Dynamics of Structures (McGraw-Hill, 1975; Stroiizdat, Moscow, 1979).
8.  V. V. Hilchevskii and V. G. Dubenets, Energy Scattering in Vibrations of Thin-Walled Structure Elements (Visha Shkola, Kiev, 1977) [in Russian].
9.  Ya. G. Panovko, Internal Friction in Vibrations of Elastic Systems (Fizmatgiz, Moscow, 1960) [in Russian].
10.  G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration-Absorbing Properties of Structure Materials (Naukova Dumka, Kiev, 1971; Warsaw, 1976) [in Russian, in Polish].
11.  E. S. Sorokin, To the Theory of Internal Friction in Vibrations of Elastic Systems (Gosstroiizdat, Moscow, 1960) [in Russian].
12.  V. A. Palmov, Vibrations of Elastoplastic Bodies (Nauka, Moscow, 1976) [in Russian].
13.  I. K. Kikoin (Editor), Tables of Physical Quantities. Handbook (Atomizdat, Moscow, 1976) [in Russian].
Received 19 June 2014
Link to Fulltext
<< Previous article | Volume 52, Issue 2 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100