Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-2pp.172-183

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 52, Issue 2 / 2017 | Next article >>
M.P. Galanin, M.K. Krylov, A.P. Lototskii, and A.S. Rodin, "Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon," Mech. Solids. 52 (2), 172-183 (2017)
Year 2017 Volume 52 Number 2 Pages 172-183
DOI 10.3103/S0025654417020078
Title Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon
Author(s) M.P. Galanin (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia, galan@keldysh.ru)
M.K. Krylov (State Research Center of Russian Federation Troitsk Institute of Innovative and Thermonuclear Research, ul. Pushkovykh, vlad. 12, Troitsk, Moscow Region, 142190 Russia)
A.P. Lototskii (State Research Center of Russian Federation Troitsk Institute of Innovative and Thermonuclear Research, ul. Pushkovykh, vlad. 12, Troitsk, Moscow Region, 142190 Russia)
A.S. Rodin (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia)
Abstract A method for numerical simulation of the motion of the plane liner in a magnetic compressor based on a combination of the transverse and longitudinal two-dimensional models is proposed. The method permits modeling the interaction of the liner ribbon with the rigid basement for the liner kinematic characteristics close to the experimental ones. Three different model are considered to justify the choice of the mathematical model of an elastoplastic body which would be suitable for solving similar problems. A series of computations is performed, and the results and scope of each of the models are analyzed.
Keywords liner, elastoplastic body, large strains, contact problem
References
1.  A. S. Rodin, Model of Plastic Liner Motion in Magnetic Compressor and Its Application, Preprint No. 50 (IPM RAN, Moscow, 2009) [in Russian].
2.  M. P. Galanin, A. P. Lototskii, and A. S. Rodin, Mathematical Simulation of Liner Motion in the Cross-Section of Magnetic Compressor, Preprint No. 57 (IPM RAN, Moscow, 2009) [in Russian].
3.  M. P. Galanin, A. P. Lototskii, A. S. Rodin, and I. A. Shcheglov, "Liner Motion in the Cross-Section of Magnetic Compressor," Vestink MGTU im. Baumana. Est. Nauki, No. 2, 65-84 (2010).
4.  M. P. Galanin, A. P. Lototskii, and A. S. Rodin, "Liner Motion in Various Cross-Sections of Magnetic Compressor," Mat. Model. 22 (10), 35-55 (2010).
5.  M. P. Galanin, M. K. Krylov, A. P. Lototskii, and A. S. Rodin, Mathematical Simulation of Magnetic Compressor Operation, Preprint No. 5 (IPM RAN, Moscow, 2011) [in Russian].
6.  E. V. Grabovskii, V. P. Bakhtin, N. M. Efremov, et al., "Experimental and Computational Studies of Magnetic Compressor Flow with Strip Liner Supplied from a Capacitive Storage," Yadern. Fiz. Inzhiniring 4 (2), 136-145 (2013).
7.  E. V. Grabovskii, V. P. Bakhtin, A. M. Zhitlukhin, et al., "Operation of a Magnetic Pulse Compressor with Electrodynamic Acceleration of a Liner," Zh. Tekhn. Fiz. 84 (7), 126-135 (2014) [Tech. Phys. (Engl. Transl.) 59 (7), 1072-1081 (2014)].
8.  S. N. Korobeinikov, Nonlinear Deformation of Solids (Izdat. SO RAN, Novosibirsk, 2000) [in Russian].
9.  D. Bland, Nonlinear Dynamical Elasticity (Blaisdell, London, 1969; Mir, Moscow, 1972).
10.  V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian]
11.  W. Prager, Introduction to Mechanics of Continua (Ginn, Boston, 1961; Izdat. Inostr. Lit., Moscow, 1963).
12.  B. D. Annin and S. N. Korobeinikov, "Admissible Forms of Elastic Laws of Deformation in Constitutive Relations of Elastoplasticity," Sib. Zh. Industr. Mat. 1 (1), 21-34 (1998).
13.  A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Strains: Theory, Algorithms, Applications (Nauka, Moscow, 1986) [in Russian].
14.  M. Kleiber, Incremental Finite Element Modeling in Nonlinear Solid Mechanics (Ellis Horwood, Chichester, 1989).
15.  L. Szabó and M. Balla, "Comparison of Some Stress Rates. II," Int. J. Solids Struct. 25 (3), 279-297 (1989).
16.  T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000).
17.  M. Kojic and K.-J. Bathe, Inelastic Analysis of Solids and Structures (Springer, New York, 2005).
18.  O. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, New York, 1971; Mir, Moscow, 1975).
19.  N. N. Malinin, Applied Theory of Plasticity and Creep (Mashinostroenie, Moscow, 1968) [in Russian].
Received 05 September 2016
Link to Fulltext
<< Previous article | Volume 52, Issue 2 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100