Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
S.A. Reshmin, "Estimate of the Control Threshold Value in the Problem on a Time-Optimal Satellite Attitude Transition Maneuver," Mech. Solids. 52 (1), 9-17 (2017)
Year 2017 Volume 52 Number 1 Pages 9-17
DOI 10.3103/S0025654417010022
Title Estimate of the Control Threshold Value in the Problem on a Time-Optimal Satellite Attitude Transition Maneuver
Author(s) S.A. Reshmin (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, reshmin@ipmnet.ru)
Abstract The time-optimal problem is considered for a nonlinear Lagrangian system with one degree of freedom. The system is controlled by a force bounded in absolute value, and all noncontrol forces are potential. We study the properties of optimal synthesis on the phase cylinder and indicate the conditions under which it has the simplest structure, namely, involves at most one switching for any initial conditions. The approach is used to specify the structure of the well-known solution in the classical problem on the time-optimal satellite attitude transition maneuver in the orbit plane.
Keywords time-optimal problem, number of switchings, second-order system, Lagrangian system, satellite
References
1.  V. V. Beletskii, "Optimal Transfer of an Earth Satellite to a Gravitationally Stable Position," Kosmich. Isseld. 9 (3), 366-375 (1971) [Cosmic Res. (Engl. Transl.) 9 (3), 337-344 (1971)].
2.  A. A. Anchev, "Equilibrium Attitude Transitions of a Three-Rotor Gyrostat in a Circular Orbit," AIAA J. 11 (4), 467-472 (1973).
3.  A. P. Markeev, Theoretical Mechanics (NITs "Regular and Chaotic Dynamics," Moscow-Izhevsk, 2007) [in Russian].
4.  S. A. Reshmin and F. L. Chernous'ko, "A Time-Optimal Control Synthesis for a Nonlinear Pendulum," Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 1, 13-22 (2007) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 46 (1), 9-18 (2007)].
5.  S. A. Reshmin, "Finding the Principal Bifurcation Value of the Maximum Control Torque in the Problem of Optimal Control Synthesis for a Pendulum," Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 2, 5-20 (2008) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 47 (2), 163-178 (2008)].
6.  L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Gordon & Breach Sci. Publ., New York, 1986).
7.  R. Isaacs, Differential Games (Wiley, New York, 1965; Mir, Moscow, 1967).
8.  E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).
9.  B. Friedland and P. Sarachik, "Indifference Regions in Optimum Attitude Control," IEEE Trans. Automatic Control 9 (2), 180-181 (1964).
10.  J. L. Garcia Almuzara and I. Flügge-Lotz, "Minimum Time Control of a Nonlinear System," J. Differen. Equations 4 (1), 12-39 (1968).
11.  S. A. Reshmin, "Bifurcation in a Time-Optimal Problem for a Second-Order Non-Linear System," Prikl. Mat. Mekh. 73 (4), 562-572 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (4), 403-410 (2009)].
12.  S. A. Reshmin and F. L. Chernousko, "Properties of the Time-Optimal Feedback Control for a Pendulum-Like System," J. Optimiz. Theory Appl. 163 (1), 320-252 (2014).
Received 22 December 2014
Link to Fulltext
<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100