Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2017-1pp.25-34

Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
A.S. Shamaev and V.V. Shumilova, "Plane Acoustic Wave Propagation through a Composite of Elastic and Kelvin-Voigt Viscoelastic Material Layers," Mech. Solids. 52 (1), 25-34 (2017)
Year 2017 Volume 52 Number 1 Pages 25-34
DOI 10.3103/S0025654417010046
Title Plane Acoustic Wave Propagation through a Composite of Elastic and Kelvin-Voigt Viscoelastic Material Layers
Author(s) A.S. Shamaev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, sham@rambler.ru)
V.V. Shumilova (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, v.v.shumilova@mail.ru)
Abstract The problem of plane wave propagation through a plane composite layer of thickness h is considered. The composite consists of periodically repeated elastic and Kelvin-Voigt viscoelastic material layers, and all layers are either parallel or perpendicular to the incident wave front. Moreover, it is assumed that the thickness of each separate layer of the composite is much less than the acoustic wave length and the thickness h of the entire composite. We study the problem by using a homogenized model of the composite, which allows us to find the reflection and transmission factors and the variation in the sound intensity level as it propagates though the composite layer of thickness h.
Keywords acoustic wave, layered composite, reflection factor, transmission factor, sound intensity
References
1.  N. S. Bakhvalov and G. P. Panasenko, Homogenization of Processes in Periodic Media. Mathematical Problems of Mechanics of Composite Materials (Nauka, Moscow, 1984) [in Russian].
2.  B. E. Pobedrya, Mechanics of Composite Materials (Izdat. MGU, Moscow, 1984) [in Russian].
3.  R. M. Christensen, Introduction to Mechanics of Composite Materials (Wiley, New York, 1979; Mir, Moscow, 1982).
4.  D. I. Bardzokas and A. I. Zobnin, Mathematical Modeling of Physical Processes in Composite Materials of Periodic Structure (Editorial URSS, Moscow, 2003) [in Russian].
5.  A. S. Shamaev and V. V. Shumilova, "On the Spectrum of One-Dimensional Oscillations of a Composite Composed of Elastic and Viscoelastic Material Layers," Sib. Zh. Industr. Mat. 15 (4), 124-134 (2012).
6.  A. S. Shamaev and V. V. Shumilova, "On the Spectrum of One-Dimensional Oscillations in the Medium of Elastic and Viscoelastic Kelvin-Voigt Material Layers," Zh. Vych. Mat. Mat. Fiz. 53 (2), 282-290 (2013).
7.  A. A. Il'yushin and B. E. Pobedrya, Foundations of Mathematical Theory of Thermoviscoelasticity (Nauka, Moscow, 1970) [in Russian].
8.  G. Duvaut and J.-L. Lions, Les Inéquations en Méchanique et en Physique (Dunod, Paris, 1972; Nauka, Moscow, 1980).
9.  B. E. Pobedrya and D. V. Georgievskii, Foundations of Continuum Mechanics. A Course of Lectures (Fizmatlit, Moscow, 2006) [in Russian].
10.  L. M. Brekhovskikh and O. A. Godin, Acoustics of Laminated Media (Nauka, Moscow, 1989) [in Russian].
Received 03 April 2014
Link to Fulltext
<< Previous article | Volume 52, Issue 1 / 2017 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100