Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-6pp.654-659

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 51, Issue 6 / 2016 | Next article >>
V.V. Perepelkin, "Fluctuations of Pole Oscillations of Deformable Earth under Nonstationary Perturbations," Mech. Solids. 51 (6), 654-659 (2016)
Year 2016 Volume 51 Number 6 Pages 654-659
DOI 10.3103/S0025654416060042
Title Fluctuations of Pole Oscillations of Deformable Earth under Nonstationary Perturbations
Author(s) V.V. Perepelkin (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, vadimkin1@yandex.ru)
Abstract An approach of celestial mechanics is used to consider variations in the tensor of inertia due to elastic deformations arising under the action of the centrifugal potential. The effects of influence of random actions are investigated in an example of fluctuation-dissipative perturbations of geophysical nature. A combined model of the Earth rotation fluctuations permits taking into account the stochastic components of the pole tide. It is shown that small irregular perturbations in tidal processes generate variations in the Chandler component of the pole oscillations.
Keywords Earth's pole oscillations, pole tide, Chandler frequency, geopotential, Earth rotation, celestial-mechanics model
References
1.  International Earth Rotation and Reference Systems Service - IERS Annual Reports, URL: http://www.iers.org.
2.  L. D. Akulenko, D. M. Klimov, Yu. G. Markov, and V. V. Perepelkin, "Oscillatory-Rotational Processes in the Earth Motion about the Center of Mass: Interpolation and Forecast," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 6-29 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 601-621 (2012)].
3.  L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova, "A Gravitational-Tidal Mechanism for the Earth's Polar Oscillations," Astron. Zh. 82 (10), 950-960 (2005) [Astron. Rep. (Engl. Transl.) 49 (10), 847-857 (2005)].
4.  L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova, "Analysis of Multifrequency Effects in Oscillations of the Earth's Pole," Astron. Zh. 84 (5), 471-478 (2007). [Astron. Rep. (Engl. Transl.) 51 (5), 421-427 (2007)].
5.  V. V. Perepelkin, "Rotation of the Deformable Earth with Moments of Fluctuation-Dissipation Forces Taken into Account," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 119-130 (2006) [Mech. Solids (Engl. Transl.) 41 (4), 92-100 (2006)].
6.  W. H. Munk and G. J. F. MacDonald, The Rotation of the Earth (Cambridge Univ. Press, Cambridge, 1960; Mir, Moscow, 1964).
7.  N. E. Egarmin, "Influence of Elastic Strains on the Tensor of Inertia of a Solid," Izv. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 43-48 (1980) [Mech. Solids (Engl. Transl.)].
8.  Global Mean Sea Level Data, URL: http://podaac.jpl.nasa.gov.
9.  D. Pugh and P. Woodworth, Sea-Level Science (Cambridge Univ. Press, Cambridge, 2014).
10.  Permanent Service for Mean Sea Level, URL: http://www.psmsl.org.
11.  V. S. Pugachev and I. N. Sinitsin, Theory of Stochastic Systems (Logos, Moscow, 2000) [in Russian].
Received 07 April 2016
Link to Fulltext http://link.springer.com/article/10.3103/S0025654416060042
<< Previous article | Volume 51, Issue 6 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100