| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12895 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8084
|
In English (Mech. Solids): | | 4811 |
|
<< Previous article | Volume 51, Issue 6 / 2016 | Next article >> |
M.V. Belichenko, "Stability of High-Frequency Periodic Motions of a Heavy Rigid Body with a Horizontally Vibrating Suspension Point," Mech. Solids. 51 (6), 632-642 (2016) |
Year |
2016 |
Volume |
51 |
Number |
6 |
Pages |
632-642 |
DOI |
10.3103/S0025654416060029 |
Title |
Stability of High-Frequency Periodic Motions of a Heavy Rigid Body with a Horizontally Vibrating Suspension Point |
Author(s) |
M.V. Belichenko (Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia, tuzemec1@rambler.ru) |
Abstract |
The motion of a heavy rigid body one of whose points (the
suspension point) executes horizontal harmonic high-frequency
vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body. |
Keywords |
rigid body, fast vibration, periodic motion, stability |
References |
1. | A. Stephenson,
"On a New Type of Dynamical Stability,"
Mem. Proc. Manch. Lit. Phil. Soc.
52, Pt. 2 (8), 1-10 (1908). |
2. | A. Stephenson,
"On Induced Stability,"
Phil. Mag. Ser. 7
17, 765-766 (1909). |
3. | S. S. Arutyunov,
"On Damped Pendulum with Vibrating Suspension Point,"
Trudy Kazan. Aviats. Inst.,
No. 45, 93-102 (1959). |
4. | P. Hirtsh,
"Das Pendel mit Oszillierendem Aufhängepunkt,"
ZAMM
10 (1), 41-52 (1930). |
5. | K. Klotter and G. Kotowski,
"Über die Stabilität der Bewegungen des Pendels mit Oszillierendem Aufhängepunkt,"
ZAMM
19 (5), 289-296 (1939). |
6. | P. L. Kapitsa,
"Pendulum with Vibrating Suspension,"
Uspekhi Fiz. Nauk
44 (1), 7-20 (1951). |
7. | P. L. Kapitsa,
"Dynamical Stability of a Pendulum with Vibrating Suspension Point,"
Zh. Éksp. Teor. Fiz.
21 (5), 588-597 (1951). |
8. | A. Erdélyi,
"Über die Kleinen Schwingungen eines Pendels mit Oszillierendem Aufhängepunkt,"
ZAMM
14 (4), 235-247 (1934). |
9. | L. D. Landau and E. M. Lifshitz,
Course of Theoretical Physics, Vol. 1: Mechanics
(Nauka, Moscow, 1965; Pergamon Press, Oxford, 1976). |
10. | T. G. Strizhak,
Methods for Studying 'Pendulum'-Type Dynamical Systems
(Nauka, Alma-Ata, 1981)
[in Russian]. |
11. | L. D. Akulenko,
"Some Rotating-Oscillating Systems Subject to
High-Frequency Perturbations,"
Zh. Vychisl. Mat. Mat. Fiz.
8 (5), 1133-1139 (1968)
[U.S.S.R. Comput. Math. Math. Phys. (Engl. Transl.)
8 (5), 272-281 (1968)]. |
12. | D. J. Acheson,
"A Pendulum Theorem,"
Proc. Roy. Soc. London A
443 (1917), 239-245 (1993). |
13. | V. I. Yudovich,
"Vibrodynamics and Vibrogeometry of Mechanical Systems with Constraints,"
Uspekhi Mekh.
4 (3), 26-158 (2006). |
14. | I. G. Malkin, Several Problems of Theory of Nonlinear Vibrations (Nauka, Moscow, 1956)
[in Russian]. |
15. | O. V. Kholostova, "Stability of Periodic Motions of the Pendulum
with a Horizontally Vibrating Suspension Point," Izv. Akad. Nauk.
Mekh. Tverd. Tela, No. 4, 35-39 (1997) [Mech. Solids (Engl. Transl.) 32 (4), 29-33 (1997)]. |
16. | O. V. Kholostova,
"On Motions of a Pendulum with Vibrating Suspension Point,"
in Theoretical Mechanics, Collection of Methodological Papers, No. 23
(Izd-vo MPI, Moscow, 2003),
pp. 157-167
[in Russian]. |
17. | O. V. Kholostova,
"On the Motions of a Double Pendulum with Vibrating Suspension Point,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 2, 25-40 (2009)
[Mech. Solids (Engl. Transl.)
44 (2), 184-197 (2009)]. |
18. | E. A. Vishenkova and O. V. Kholostova,
"To Dynamics of a Double Pendulum with a Horizontally Vibrating Point of Suspension,"
Vestnik Udmurt. Univ. Mat. Mekh. Komp. Nauki,
No. 2, 114-129 (2012). |
19. | O.V. Kholostova,
"The dynamics of a Lagrange Top with a Vibrating Suspension Point,"
Prikl. Mat. Mekh.
63 (5), 785-796 (1999)
[J. Appl. Math. Mech. (Engl. Transl.)
63 (5), 741-750 (1999)]. |
20. | A. P. Markeev,
"On the Theory of Motion of a Rigid Body with a Vibrating Suspension,"
Dokl. Ross. Akad. Nauk
427 (6), 771-775 (2009)
[Dokl. Phys. (Engl. Transl.)
54 (8), 392-396 (2009)]. |
21. | A. P. Markeev, "The Equations of the Approximate Theory of the
Motion of a Rigid Body with a Vibrating Suspension Point," Prikl. Mat. Mekh.
75 (2), 193-203 (2011)
[J. Appl. Math. Mech. (Engl. Transl.)
75 (2), 132-139 (2011)]. |
22. | A. P. Markeev, "On the Motion of a Heavy Dynamically Symmetric
Rigid Body with Vibrating Suspension Point,"
Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 3-10 (2012)
[Mech. Solids (Engl. Transl.)
47 (4), 373-379 (2012)]. |
23. | O. V. Kholostova,
"On Stability of Equilibria of a Rigid Body with Vibrating Suspension Point,"
Vestnik RUDN. Mat. Inf. Fiz.,
No. 2. 111-122 (2011). |
24. | O. V. Kholostova, "On Stability of Special Motions of a Heavy
Rigid Body Due to Fast Vertical Vibrations of One of Its Points,"
Nelin. Din. 11 (1), 99-116 (2015). |
|
Received |
25 June 2015 |
Link to Fulltext |
|
<< Previous article | Volume 51, Issue 6 / 2016 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|