Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-6pp.677-683

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 51, Issue 6 / 2016 | Next article >>
A.A. Belov, L.A. Igumnov, S.Yu. Litvinchuk, and V.S. Metrikin, "Application of Boundary Integral Equations for Analyzing the Dynamics of Elastic, Viscoelastic, and Poroelastic Bodies," Mech. Solids. 51 (6), 677-683 (2016)
Year 2016 Volume 51 Number 6 Pages 677-683
DOI 10.3103/S0025654416060078
Title Application of Boundary Integral Equations for Analyzing the Dynamics of Elastic, Viscoelastic, and Poroelastic Bodies
Author(s) A.A. Belov (Institute of Mechanics, Lobachevsky Nizhnii Novgorod State University, pr. Gagarina 23-6, GSP-1000, Nizhnii Novgorod, 603950 Russia)
L.A. Igumnov (Institute of Mechanics, Lobachevsky Nizhnii Novgorod State University, pr. Gagarina 23-6, GSP-1000, Nizhnii Novgorod, 603950 Russia)
S.Yu. Litvinchuk (Institute of Mechanics, Lobachevsky Nizhnii Novgorod State University, pr. Gagarina 23-6, GSP-1000, Nizhnii Novgorod, 603950 Russia, litvinchuk@mech.unn.ru)
V.S. Metrikin (Institute of Mechanics, Lobachevsky Nizhnii Novgorod State University, pr. Gagarina 23-6, GSP-1000, Nizhnii Novgorod, 603950 Russia)
Abstract Two approaches (classical and nonclassical) of the boundary integral equation method for solving three-dimensional dynamical boundary value problems of elasticity, viscoelasticity, and poroelasticity are considered. The boundary integral equation model is used for porous materials. The Kelvin-Voigt model and the weakly singular hereditary Abel kernel are used to describe the viscoelastic properties. Both approaches permit solving the dynamic problems exactly not only in the isotropic but also in the anisotropic case. The boundary integral equation solution scheme is constructed on the basis of the boundary element technique. The numerical results obtained by the classical and nonclassical approaches are compared.
Keywords three-dimensional problem, boundary integral equation method, anisotropy, viscoelasticity, poroelasticity
References
1.  T. A. Cruse and F. J. Rizzo, "A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem. Part I," J. Math. Anal. Appl., No. 22, 244-259 (1968).
2.  T. A. Cruse and F. J. Rizzo, "A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem. Part II," J. Math. Anal. Appl., No. 22, 341-355 (1968).
3.  A. G. Ugodchikov and N. M. Khutoryanskii, Boundary Element Method in Mechanics of Deformable Solids (Izdat. Kazan Univ., Kazan, 1986) [in Russian].
4.  M. Schanz, Wave Propagation in Viscoelastic and Poroelastic Continua (Springer, Berlin, 2001).
5.  F. Durbin, "Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate's Method," Computer J. 17 (4), 371-376 (1974).
6.  C. Lubich, "Convolution Quadrature and Discretized Operational Calculus. I," Numer. Math., No. 52, 129-145 (1988).
7.  C. Lubich, "Convolution Quadrature and Discretized Operational Calculus. II," Numer. Math., No. 52, 413-442 (1988).
8.  L. A. Igumnov and I. P. Markov, "Application of the Boundary Element Method for Analyzing the Dynamics of Anisotropic Elastic Bodies," Probl. Prochn. Plastichn. 76 (1), 65-69 (2014).
9.  C. Y. Wang and J. D. Achenbach, "Three-Dimensional Time-Harmonic Elastodynamic Green's Functions for Anisotropic Solids," Proc. Roy. Soc. London. A 449 (1937), 441-458 (1995).
10.  L. Gaul, M. Kogl, and M. Wagner, Boundary Element Method for Engineers and Scientists (Springer, Berlin, 2003).
11.  V. A. Babeshko, "New Method for Solving Boundary Value Problems of Continuum Mechanics and Mathematical Physics for Nonclassical Domains," Dokl. Ross. Akad. Nauk 284 (1), 73-76 (1985) [Dokl. Phys. (Engl. transl.)].
12.  A. Norris, "Dynamic Green's Functions in Anisotropic Piezoelectric, Thermoelastic, and Poroelastic Solids," Proc. Roy. Soc. London. A 447 (1929), 475-188 (1994).
13.  A. V. Amenitskii, L. A. Igumnov, and I. S. Karelin, "Development of the Boundary Element Method for Solving the Problems of Wave Propagation in Porous Media," Probl. Prochn. Plastichn. 70, 71-78 (2008).
14.  A. V. Amenitskii, A. A. Belov, L. A. Igumnov, and I. S. Karelin, "Boundary Integral Equations for Solving Dynamic Problems of Three-Dimensional Theory of Poroelasticity," Probl. Prochn. Plastichn. 71, 164-171 (2009).
15.  L. A. Igumnov, "Boundary Integral Equations for Three-Dimensional Problems on Plane Waves," Dokl. Ross. Akad. Nauk 409 (5), 622-626 (2006) [Dokl. Phys. (Engl. transl.) 51 (8), 440-443 (2006)].
16.  A. O. Vatul'yan, "On Boundary Integral Equations of the First Kind in Dynamic Problems of Anisotropic Elasticity," Dokl. Ross. Akad. Nauk 333 (3), 312-314 (1993) [Dokl. Phys. (Engl. transl.)].
Received 23 May 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 6 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100