Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-3pp.339-348

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
S.S. Gavryushin and A.S. Nikolaeva, "Method of Change of the Subspace of Control Parameters and Its Application to Problems of Synthesis of Nonlinearly Deformable Axisymmetric Thin-Walled Structures," Mech. Solids. 51 (3), 339-348 (2016)
Year 2016 Volume 51 Number 3 Pages 339-348
DOI 10.3103/S0025654416030110
Title Method of Change of the Subspace of Control Parameters and Its Application to Problems of Synthesis of Nonlinearly Deformable Axisymmetric Thin-Walled Structures
Author(s) S.S. Gavryushin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, gss@bmstu.ru)
A.S. Nikolaeva (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia)
Abstract The theoretical foundations, methods, and algorithms developed to analyze the stability and postbuckling behavior of thin elastic axisymmetric shells are discussed. The algorithm for numerically studying the processes of nonlinear deformation of thin-walled axisymmetric shells by the solution parametric continuation method is generalized to solving the practical problem of design of mechanical actuators of discrete action. The synthesis algorithm is based on the method of changing the subspace of control parameters, which is supplemented with the procedure of smooth transition in changing the subspaces. The efficiency of the proposed algorithm is illustrated by an example of synthesis of a thermobimetallic actuator of discrete action. The procedure of determining an isolated solution, whose existence was predicted by V. I. Feodosiev, is considered in the framework of studying the process of nonlinear deformation of a corrugated membrane loaded by an external pressure.
Keywords nonlinear deformation, synthesis problem, thin-walled axisymmetric shell, actuator, postbuckling behavior, discrete switching, numerical algorithm, parametric continuation, changing the subspace of parameters, smooth transition procedure
References
1.  D. H. Bich and H. V. Tung, "Nonlinear Axisymmetric Response of Functionally Graded Shallow Spherical Shells under Uniform External Pressure Including Temperature Effects," Int. J. Nonlin. Mech. 46 (9), 1195-1204 (2011).
2.  H. Y. Chan and W. J. Li, "A Thermally Actuated Polymer Micro Robotic Gripper for Manipulation of Biological Cells," in Proc. IEEE Int. Conf. Robotics and Automation (ICRA 2003), No. 9 (2003), pp. 288-293.
3.  J. Kusterer, F. J. Hernandez, S. Haroon, and E. Kohn, "Bi-Stable Micro Actuator Based on Stress Engineered Nano-Diamond," Diamond Related Mater. 15 (4), 773-776 (2006).
4.  J. J. Lee, J. K. Oh, I. Lee, J. J. Rhiu, "Nonlinear Static and Dynamic Instability of Complete Spherical Shells Using Mixed Finite Element Formulation," Int. J. Nonlin. Mech. 38 (6), 923-934 (2003).
5.  L. A. Liew, A. Tuantranont, V. M. Bright, "Modeling of Thermal Actuation in a Bulk-Micro-Machined CMOS Micromirror," Microelectron 31, 791-801 (2000).
6.  O. C. Zienkiewicz, The Finite Element Method, 3rd. ed. (McGraw-Hill, New York, 1977).
7.  E. I. Grigolyuk and E. A. Lopanitsyn, Finite Deflections, Stability, and Postbuckling Behavior of Thin Shallow Shells (MGTU "MAMI", Moscow, 2004) [in Russian].
8.  K. Marguerre, "Zur Theorie der gekrümmten Platter grosser Formándering," in Proc. 5th Intern, Congr. Appl. Mech. Cambridge, Massachusetts, 1938 (Wiley, New York, 1939), pp. 93-101.
9.  V. I. Feodosiev, Elastic Elements of Precision Instrument Engineering (Oborongiz, Moscow, 1949) [in Russian].
10.  E. Reissner, "On Axisymmetrical Deformation of Thin Shells of Revolution," in Proc. 3rd Sympos. Appl. Math., Vol. 3 (McGraw-Hill, New York, 1950), pp. 27-52.
11.  J. Mescall, "Numerical Solution of Nonlinear Equations for Shell of Revolution," AIAA J. 4 (11), 2041-2043 (1966).
12.  E. I. Grigolyuk and V. I. Shalashilin, Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics (Nauka, Moscow, 1988; Kluwer, Dordrecht, 1991; Springer, New York, 1991).
13.  N. V. Valishvili, "An Algorithm of the Solution of Nonlinear Boundary Value Problems," Prikl. Mat. Mekh. 32 (6), 1089-1096 (1968) [J. Appl. Math. Mech. (Engl. Transl.) 32 (6), 1107-1110 (1968)].
14.  N. V. Valishvili, Computer Methods for Analysis of Shells of Revolution (Mashinostroenie, Moscow, 1976) [in Russian].
15.  E. Riks, "The Application of Newton's Method to the Problem of Elastic Stability," J. Appl. Mech. 39, 1060-1065 (1972).
16.  M. A. Crisfield, "A Fast Incremental/Iterative Solution Procedure that Handles `Snap-Through'," Comput. Struct. 13 (1), 55-62 (1981).
17.  V. I. Shalashilin and E. B. Kuznetsov, Solution Parametric Continuation Method and the Best Parametrization (Editorial URSS, Moscow, 1999) [in Russian].
18.  E. B. Kuznetsov, Several Applications of the Solution Best Parametric Continuation Method (Izdat. MAI, Moscow, 2013) [in Russian].
19.  P. Deufhard, Newton Method for Nonlinear Problems. Affine Invariance and Adaptive Algorithms (Springer, 2000).
20.  M. Prashanth and D. K. Gupta, "Convergence of a Parametric Continuation Method," Kodai Math. J. 37 (1), 212-234 (2014).
21.  Y. Yan, Y. Bo, and D. Bo, "Robust Continuation Method for Tracking Solution Curves of Parametrized Systems," Num. Alg. 65 (4), 825-841 (2014).
22.  A. N. Bonini, E. M. Magalhaes, and D. A. Alves, "Development and Assessment of Nonlinear Predictors for Continuation Method," Int. J. Engng Appl. Sci. 5 (1), 1-9 (2014).
23.  V. I. Arnold, Catastrophe Theory (Nauka, Moscow, 1990) [in Russian].
24.  M. M. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations (Nauka, Moscow, 1969; Noordhoff, Leyden, 1974).
25.  S. S. Gavryushin, "Numerical Simulation and Analysis of Processes of Nonlinear Deformation of Flexible Shells," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 109-119 (1994) [Mech. Solids (Engl. Transl.)].
26.  S. S. Gavryushin, Development of Methods for Computation and Design of Elastic Shell Structures of Device Facilities, Doctoral Dissertation in Technical Sciences (Moscow, 1994) [in Russian].
27.  A. A. Karim and S. S. Gavryushin, "Numerical Analysis of Thermobimetallic Elements of High-Speed Electrotechnical Units," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 8, 17-23 (2005).
28.  V. I. Feodosiev, "On Large Deflections and Stability of Circular Membrane with Small Corrugation," Prikl. Mat. Mekh., No. 9, 389-412 (1945).
29.  S. S. Gavryushin, "Analysis and Synthesis of Function Elements of Robotic Devices with Prescribed Law of Motion," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 12, 23-32 (2011).
30.  S. S. Gavryushin, O. O. Baryshnikova, and O. F. Boriskin, Numerical Analysis of Machine and Device Structure Elements (Izdat. Bauman MGTU, Moscow, 2014) [in Russian].
31.  S. S. Gavryushin, "Numerical Simulation of Processes of Nonlinear Deformation of Thin Elastic Shells," Vestnik MGTU im. Baumana. Ser. Mat. Mod. Chisl. Met., No. 1, 151-166 (2014).
32.  S. S. Gavryushin, A. Macmillan, A. S. Nikolaeva, and T. B. Podkopaeva, "Computation of Perspective Structures of Actuators," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 8, 73-78 (2015).
Received 05 February 2016
Link to Fulltext
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100