Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-3pp.245-255

Archive of Issues

Total articles in the database: 11262
In Russian (. . ): 8011
In English (Mech. Solids): 3251

<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
V.S. Zarubin and O.V. Novozhilova, "Estimates of Thermoelastic Characteristics of Composites Reinforced by Short Anisotropic Fibers," Mech. Solids. 51 (3), 245-255 (2016)
Year 2016 Volume 51 Number 3 Pages 245-255
DOI 10.3103/S0025654416030018
Title Estimates of Thermoelastic Characteristics of Composites Reinforced by Short Anisotropic Fibers
Author(s) V.S. Zarubin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, zarubin@bmstu.ru)
O.V. Novozhilova (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, helgam@bk.ru)
Abstract We construct a mathematical model describing thermomechanical interaction between composite structure elements (isotropic particles of the matrix and anisotropic short fibers) and the macroscopically isotropic elastic medium with desired thermoelastic characteristics. At the first stage of this model, the self-consistency method is used to obtain relations determining the elasticity moduli of the composite, and at the second stage, the model permits determining its linear thermal expansion coefficient. The dual variational statement of the linear thermoelasticity problem in an inhomogeneous solid permits obtaining two-sided estimates for the bulk elasticity modulus, shear modulus, and linear thermal expansion coefficient of the composite under study. The calculated dependencies presented in the paper permit predicting the thermoelastic characteristics of a composite reinforced by anisotropic short fibers (including those in the form of nanostructure elements).
Keywords composite, short fiber, self-consistency method, thermoelastic characteristics
References
1.  G. Lubin (Editor), Handbook of Composites, Vol. 2 (Van Nostrand, 1982; Mashinostroenie, Moscow, 1988).
2.  V. V. Vasiliev, V. D. Protasov, V. V. Bolotin, et al., Composite Materials, Reference book, Ed. by V. V. Vasiliev and Yu. M. Tarnopolskii (Mashinostroenie, Moscow, 1990) [in Russian].
3.  M. A. Komkov and V. A. Tarasov, Technology of Composite Structure Winding in Rockets and Destruction Tools (Izdat. Bauman MGTU, Moscow, 2011) [in Russian].
4.  V. A. Kalinchev and D. A. Yagodnikov, Technology of Production of Solid-Propellant Rocket Engine (Izdat. Bauman MGTU, Moscow, 2011) [in Russian].
5.  T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Nauka, Moscow, 1977) [in Russian].
6.  G. P. Sendecky (Editor), Mechanics of Composite Materials (Academic Press, 1974; Mir, Moscow, 1978).
7.  R. M. Christensen, Introduction to Mechanics of Composite Materials (Wiley, New York, 1979; Mir, Moscow, 1982).
8.  G. A. Vanin, Micromechanics of Composite Materials (Naukova Dumka, Kiev, 1985) [in Russian].
9.  L. P. Khoroshun, "Mathematical Models and Methods of the Mechanics of Stochastic Composites," Prikl. Mekh. 36 (10), 30-62 (2000) [Int. Appl. Mech. (Engl. Transl.) 36 (10), 1284-1316 (2000)].
10.  D. M. Karpinos (Editor), Composite Materials, Reference book (Naukova Dumka, Kiev, 1985) [in Russian].
11.  E. A. Kats, Fullerenes, Carbon Nanotubes, and Nanoclusters. Genealogy of Shapes and Ideas (Izdat. LKI, Moscow, 2008) [in Russian].
12.  O. P. Kormilitsyn, Mechanics of Materials and Nano- and Microtechnology Structures (Izdat. Center "Akademia", Moscow, 2008) [in Russian].
13.  V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Heat Conduction of a Fiber Reinforced Composite," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 5, 75-81 (2013).
14.  V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Effective Coefficients of Heat Conduction of a Composite with Inclusions Shaped as Elongated Ellipsoids of Revolution," Tepl. Prots. Tekhn., No. 6, 276-282 (2013).
15.  J. D. Eshelby, Continual Theory of Dislocations (Inostr. Lit-ra, Moscow, 1963) [in Russian].
16.  R. Hill, "A Self-Consistent Mechanics of Composite Materials," J. Mech. Phys. Solids 13 (4), 213-222 (1965).
17.  V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva, "Comparative Analysis of Estimates of Elasticity Moduli of a Composite," Vestnik MGTU im. Baumana. Ser. Mashinostr., No. 5, 53-69 (2014).
18.  I. Yu. Tsvelodub, "On the Inverse Eshelby Tensor," Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., No. 2(8), 530-535 (2010).
19.  V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izdat. Bauman MGTU, Moscow, 2008) [in Russian].
20.  N. N. Golovin, V. S. Zarubin, and G. N. Kuvyrkin, "Mixture Models of Composite Mechanics, Pt. 1: Thermomechanics and Thermoelasticity of Multicomposite Mixture," Vestnik MGTU im. Baumana. Ser. Estestv. Nauki, No. 3, 36-49 (2009).
21.  V. S. Zarubin and I. V. Stankevich, Computations of Thermal Stress Structures (Mashinostroenie, Moscow, 2005) [in Russian].
22.  I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Moduli of Metals and Nonmetals, Ed. by I. N. Frantsevich (Naukova Dumka, Kiev, 1982) [in Russian].
23.  I. S. Grigoriev and E. Z. Melikhov (Editors), Physical Quantities, Reference book (Energoatomizdat, Moscow, 1991) [in Russian].
Received 30 October 2015
Link to Fulltext
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100