| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >> |
V.S. Zarubin and O.V. Novozhilova, "Estimates of Thermoelastic Characteristics of Composites Reinforced by Short Anisotropic Fibers," Mech. Solids. 51 (3), 245-255 (2016) |
Year |
2016 |
Volume |
51 |
Number |
3 |
Pages |
245-255 |
DOI |
10.3103/S0025654416030018 |
Title |
Estimates of Thermoelastic Characteristics of Composites Reinforced by Short Anisotropic Fibers |
Author(s) |
V.S. Zarubin (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, zarubin@bmstu.ru)
O.V. Novozhilova (Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, helgam@bk.ru) |
Abstract |
We construct a mathematical model describing thermomechanical
interaction between composite structure elements (isotropic
particles of the matrix and anisotropic short fibers) and the
macroscopically isotropic elastic medium with desired thermoelastic
characteristics. At the first stage of this model, the
self-consistency method is used to obtain relations determining the
elasticity moduli of the composite, and at the second stage, the
model permits determining its linear thermal expansion coefficient.
The dual variational statement of the linear thermoelasticity
problem in an inhomogeneous solid permits obtaining two-sided
estimates for the bulk elasticity modulus, shear modulus, and
linear thermal expansion coefficient of the composite under study.
The calculated dependencies presented in the paper permit
predicting the thermoelastic characteristics of a composite
reinforced by anisotropic short fibers (including those in the form
of nanostructure elements). |
Keywords |
composite, short fiber, self-consistency method, thermoelastic characteristics |
References |
1. | G. Lubin (Editor),
Handbook of Composites, Vol. 2
(Van Nostrand, 1982; Mashinostroenie, Moscow, 1988). |
2. | V. V. Vasiliev, V. D. Protasov, V. V. Bolotin, et al.,
Composite Materials, Reference book,
Ed. by V. V. Vasiliev and Yu. M. Tarnopolskii
(Mashinostroenie, Moscow, 1990)
[in Russian]. |
3. | M. A. Komkov and V. A. Tarasov,
Technology of Composite Structure Winding in Rockets and Destruction Tools
(Izdat. Bauman MGTU, Moscow, 2011)
[in Russian]. |
4. | V. A. Kalinchev and D. A. Yagodnikov,
Technology of Production of Solid-Propellant Rocket Engine
(Izdat. Bauman MGTU, Moscow, 2011)
[in Russian]. |
5. | T. D. Shermergor,
Theory of Elasticity of Microinhomogeneous Media
(Nauka, Moscow, 1977)
[in Russian]. |
6. | G. P. Sendecky (Editor),
Mechanics of Composite Materials
(Academic Press, 1974; Mir, Moscow, 1978). |
7. | R. M. Christensen,
Introduction to Mechanics of Composite Materials
(Wiley, New York, 1979; Mir, Moscow, 1982). |
8. | G. A. Vanin,
Micromechanics of Composite Materials
(Naukova Dumka, Kiev, 1985)
[in Russian]. |
9. | L. P. Khoroshun,
"Mathematical Models and Methods of the Mechanics of Stochastic Composites,"
Prikl. Mekh.
36 (10), 30-62 (2000)
[Int. Appl. Mech. (Engl. Transl.)
36 (10), 1284-1316 (2000)]. |
10. | D. M. Karpinos (Editor),
Composite Materials, Reference book
(Naukova Dumka, Kiev, 1985)
[in Russian]. |
11. | E. A. Kats,
Fullerenes, Carbon Nanotubes, and Nanoclusters. Genealogy of Shapes and Ideas
(Izdat. LKI, Moscow, 2008)
[in Russian]. |
12. | O. P. Kormilitsyn,
Mechanics of Materials and Nano- and Microtechnology Structures
(Izdat. Center "Akademia", Moscow, 2008)
[in Russian]. |
13. | V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva,
"Heat Conduction of a Fiber Reinforced Composite,"
Izv. Vyssh. Uchebn. Zaved. Mashinostr.,
No. 5, 75-81 (2013). |
14. | V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva,
"Effective Coefficients of Heat Conduction of a Composite with Inclusions
Shaped as Elongated Ellipsoids of Revolution,"
Tepl. Prots. Tekhn.,
No. 6, 276-282 (2013). |
15. | J. D. Eshelby,
Continual Theory of Dislocations
(Inostr. Lit-ra, Moscow, 1963)
[in Russian]. |
16. | R. Hill,
"A Self-Consistent Mechanics of Composite Materials,"
J. Mech. Phys. Solids
13 (4), 213-222 (1965). |
17. | V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savelieva,
"Comparative Analysis of Estimates of Elasticity Moduli of a Composite,"
Vestnik MGTU im. Baumana. Ser. Mashinostr.,
No. 5, 53-69 (2014). |
18. | I. Yu. Tsvelodub,
"On the Inverse Eshelby Tensor,"
Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost.,
No. 2(8), 530-535 (2010). |
19. | V. S. Zarubin and G. N. Kuvyrkin,
Mathematical Models of Continuum Mechanics and Electrodynamics
(Izdat. Bauman MGTU, Moscow, 2008)
[in Russian]. |
20. | N. N. Golovin, V. S. Zarubin, and G. N. Kuvyrkin,
"Mixture Models of Composite Mechanics,
Pt. 1: Thermomechanics and Thermoelasticity of Multicomposite Mixture,"
Vestnik MGTU im. Baumana. Ser. Estestv. Nauki,
No. 3, 36-49 (2009). |
21. | V. S. Zarubin and I. V. Stankevich,
Computations of Thermal Stress Structures
(Mashinostroenie, Moscow, 2005)
[in Russian]. |
22. | I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta,
Elastic Constants and Elasticity Moduli of Metals and Nonmetals,
Ed. by I. N. Frantsevich
(Naukova Dumka, Kiev, 1982)
[in Russian]. |
23. | I. S. Grigoriev and E. Z. Melikhov (Editors),
Physical Quantities, Reference book
(Energoatomizdat, Moscow, 1991)
[in Russian]. |
|
Received |
30 October 2015 |
Link to Fulltext |
|
<< Previous article | Volume 51, Issue 3 / 2016 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|