Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-2pp.188-196

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
S.E. Aleksandrov, E.A. Lyamina, and N.M. Tuan, "Compression of an Axisymmetric Layer on a Rigid Mandrel in Creep," Mech. Solids. 51 (2), 188-196 (2016)
Year 2016 Volume 51 Number 2 Pages 188-196
DOI 10.3103/S0025654416020060
Title Compression of an Axisymmetric Layer on a Rigid Mandrel in Creep
Author(s) S.E. Aleksandrov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, sergei_alexandrov@yahoo.com)
E.A. Lyamina (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, lyamina@inbox.ru)
N.M. Tuan (Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi can, Ba dinh, Hanoi, Vietnam)
Abstract An approximate solution describing the compression of an axisymmetric layer of material on a rigid mandrel under the equations of the creep theory is constructed. The constitutive equation is introduced so that the equivalent stress tends to a finite value as the equivalent strain rate tends to infinity. Such a constitutive equation leads to a qualitatively different asymptotic behavior of the solution near the mandrel surface, on which the maximum friction law is satisfied, compared with the well-known solution for the creep model based on the power-law relationship between the equivalent stress and the equivalent strain rate. It is shown that the solution existence depends on the value of one of the parameters contained in the constitutive equations. If the solution exists, then the equivalent strain rate tends to infinity as the maximum friction surface is approached, and the qualitative asymptotic behavior of the solution depends on the value of the same parameter. There is a range of variation of this parameter for which the qualitative behavior of the equivalent strain rate near the maximum friction surface coincides with the behavior of the same variable in ideally rigid-plastic solutions.
Keywords friction, singularity, asymptotic analysis, creep
References
1.  A. E. Johnson, "Complex-Stress Creep of Metals," Metallurg. Rev. 5 (20), 447-506 (1960).
2.  A. M. Lokoshchenko, Modeling of Creep Process and Long-Term Strength of Metals (MGIU, Moscow, 2007) [in Russian].
3.  M. F. Sa, A. M. Gomes, J. R. Correia, and N. Silvestre, "Creep Behavior of Pultruded GFRP Elements - Part 1: Literature Review and Experimental Study," Comp. Struct. 93 (10), 2450-2459 (2011).
4.  G. W. Greenwood, "Reflections on Creep: A Review of the MST Archive," Mater. Sci. Technol. 29 (8), 893-899 (2013).
5.  J. P. Rouse, F. Cortellino, W. Sun, et al., "Small Punch Creep Testing: Review of Modelling and Data Interpertation," Mater. Sci. Technol. 29 (11), 1328-1345 (2013).
6.  M. Mondali and A. Abedian, "An Analytical Model for Stress Analysis of Short Fiber Composites in Power Law Creep Matrix," Int. J. Nonlin. Mech. 57, 39-49 (2013).
7.  N. N. Malinin, Creep in Metal Working (Mashinostroenie, Moscow, 1986) [in Russian].
8.  S. E. Aleksandrov, V. L. Danilov, and N. N. Chikanova, "On the Stagnation Zone in a Simulation of Axisymmetric Pressure Metal Forming under Creep," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 149-151 (2000) [Mech. Solids (Engl. Transl.) 35 (1), 127-129 (2000)].
9.  Y. Tomita and R. Sowerby, "An Approximate Analysis for Studying the Plane Strain Deformation of Strain Rate Sensitive Materials," Int. J. Mech. Sci. 21, 505-516 (1979).
10.  N. Rebelo and S. Kobayashi, "A Coupled Analysis of Viscoplastic Deformation and Heat Transfer - II: Applications," Int. J. Mech. Sci. 22, 707-718 (1980).
11.  S. A. Shesterikov and M. A. Yumasheva, "Specification of Equation of State in Creep Theory," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 86-91 (1984) [Mech. Solids. (Engl. Transl.)].
12.  A. M. Lokoshchenko, K. A. Agakhi, and L. V. Fomin, "Cantilever Creep in Bending in Aggressive Media," Probl. Mashinostr. Nadezh. Mashin, No. 4, 70-75 (2013).
13.  A. J. M. Spencer, "A Theory of the Failure of Ductile Materials Reinforced by Elastic Fibres," Int. J. Mech. Sci. 7, 197-209 (1965).
14.  S. E. Aleksandrov and Y.-R. Jeng, "A Generalization of Prandtl's and Spencer's Solutions on Axisymmetric Viscous Flow," Arch. Appl. Mech. 81 (4), 437-449 (2011).
15.  S. E. Aleksandrov and R. V. Goldstein, "Generalization of the Prandtl Solution to the Case of Axisymmetric Deformation of Materials Obeying the Double Shear Model," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 67-79 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 654-664 (2012)].
16.  R. Hill, The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford, 1950; Gostekhizdat, Moscow, 1956).
17.  L. M. Kachanov, The Theory of Creep (Fizmatgiz, Moscow, 1960; Nat. Lending Lib., 1967).
18.  S. E. Aleksandrov, "Velocity Field near the Surface of Discontinuity in an Arbitrary Flow of an Ideal Rigid-Plastic Material," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 116-122 (1995) [Mech. Solids (Engl. Transl.)].
19.  S. E. Aleksandrov and O. Richmond, "Singular Plastic Flow Fields near Surfaces of Maximum Friction Stress," Int. J. Nonlin. Mech. 36 (1), 1-11 (2001).
Received 25 February 2014
Link to Fulltext
<< Previous article | Volume 51, Issue 2 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100