Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-4pp.451-471

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
N.I. Martynov, "Integral Equations of Plane Static Boundary Value Problems of the Elasticity Theory for an Inhomogeneous Anisotropic Medium," Mech. Solids. 51 (4), 451-471 (2016)
Year 2016 Volume 51 Number 4 Pages 451-471
DOI 10.3103/S0025654416040087
Title Integral Equations of Plane Static Boundary Value Problems of the Elasticity Theory for an Inhomogeneous Anisotropic Medium
Author(s) N.I. Martynov (Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan,
Abstract The static boundary value problems of plane elasticity for an inhomogeneous anisotropic medium in a simply connected domain are reduced to the Riemann-Hilbert problem for a quasi-analytic vector. Singular integral equations over the domain are obtained, and their solvability is proved for a sufficiently wide anisotropy class. In the case of a homogeneous anisotropic body, the solutions of the first and second boundary value problems are obtained in closed form.

For compound elastic media with anisotropy varying over a domain (of a sufficiently wide class), uniquely solvable integral equations of boundary value problems of static elasticity for an inhomogeneous anisotropic medium are obtained, which readily permits finding generalized solutions that satisfy the matching conditions on the interfaces between the subdomains.
Keywords anisotropic body, integral equation, boundary value problem, index, Riemann-Hilbert problem
1.  L. Bers, "Partial Differential Equations and Generalized Analytic Functions," Proc. Nat. Ac. Se. USA 37 (1), 42-47 (1951).
2.  I. N. Vekua, Generalized Analytic Functions (Nauka, Moscow, 1988) [in Russian].
3.  B. B. Bojarski, "Theory of Generalized Analytic Vector," Annales Polonici Mathematicy 17, 281-320 (1966).
4.  N. I. Monakhov, Boundary Value Problems with Free Boundaries for Elliptic Systems of Equations (Nauka, Moscow, 1977) [in Russian].
5.  N. I. Monakhov, "Nonlinear Diffusion Processes," Sibirsk. Mat. Zh. 44 (5), 1082-1097 (2003) [Siberian Math. J. (Engl. Transl.) 44 (5), 845-856 (2003)].
6.  N. I. Muskhelishvili, Some Fundamental Problems of Mathematical Elasticity Theory (Nauka, Moscow, 1966) [in Russian].
7.  N. I. Martynov, "Boundary Value Problems of Elasticity of Inhomogeneous Medium Treated as Boundary Value Problems of Generalized Analytic Vector," Mat. Zh., No. 3(25), 69-77 (2007).
8.  N. I. Martynov, "Reduction of Boundary Value Problems of Elasticity to boundary Value Problems of Generalized Analytic Vector," in Theses of Intern. Sci. Conf. "Differential Equations, Theory of Functions, and Applications Dedicated to Academician I. N. Vekua on the Occasion of His 100th Birthday (2007), pp. 518-519 [in Russian].
9.  L. A. Alekseeva, N. I. Martynov, and I. Yu. Fedorov, "Application of Quasiconformal Mapping in Problems of Torsion of Inhomogeneous Anisotropic Bodies," Mat. Zh. 9 (3(33)), 14-18 (2009).
10.  K. F. Chernykh, Nonlinear Elasticity in Engineering (Mashinostroenie, Leningrad, 1986) [in Russian].
11.  S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Bodies (Nauka, Moscow, 1977) [in Russian].
12.  K. F. Chernykh, Introduction to Anisotropic Elasticity (Nauka, Moscow, 1988) [in Russian].
13.  N. I. Ostrosablin, "Canonical Moduli and General Solution of Equations of a Two-Dimensional Static Problem of Anisotropic Elasticity," Zh. Prikl. Mekh. Tekhn. Fiz. 51 (3), 94-106 (2010) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 51 (3), 377-388 (2010)].
14.  I. G. Petrovskii, Lectures on the Theory of Partial Differential Equations (Gos. Tekh. Izd. Tekh.-Teor. Lit., Moscow, 1953) [in Russian].
15.  N. I. Muskhelishvili, Singular Integral Equations (Boundary Value Problems of Theory of Functions and Some of Their Applications in Mathematical Physics (Fiz.-Mat. Lit., Moscow, 1962) [in Russian].
16.  N. P. Vekua, Systems of Singular Integral Equations and Some Boundary Value Problems (Nauka, Moscow, 1970) [in Russian].
17.  F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977) [in Russian].
18.  S. N. Antontsev and N. I. Monakhov, "Boundary Value Problems with Discontinuous Boundary Conditions for Quasilinear Elliptic Systems of 2m (m≥1) First-Order Equations," Izv. SO AN SSSR. Ser. Tekhn. Nauk 8 (2), 65-73 (1967).
19.  Ch. Ashyraliev and N. I. Monakhov, "Iteration Algorithm for Solving Two-Dimensional Singular Integral Equations," Din. Sploshnoi Sredy, No. 101, 21-29 (1991).
20.  G. N. Savin, Stress Distribution near Holes (Naukova Dumka, Kiev, 1968) [in Russian].
21.  G. S. Litvinchuk, Boundary Value Problems and Singular Integral Equations with Translation (Nauka, Moscow, 1977) [in Russian].
22.  E. A. Raenko, "Boundary Value Problems for a Quasiholomorphic Vector," Din. Sploshnoi Sredy, No. 118, 65-68 (2001).
23.  O. A. Ladyzhenskaya and N. I. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type (Nauka, Moscow, 1964) [in Russian].
24.  V. A. Lomakin, Theory of Elasticity of Inhomogeneous Bodies (Izdat. MGU, Moscow, 1976) [in Russian].
25.  N. I. Martynov, "Quasiconformal Mappings in Plane Elasticity of Inhomogeneous Anisotropic Medium," Vestnik NAN RK, No. 5, 11-19 (2012).
Received 18 April 2012
Link to Fulltext
<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100