Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-4pp.436-450

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
M.F. Baburchenkov and N.M. Borodachev, "Infinite Systems in Problems for a Stiffened Rectangular Plate," Mech. Solids. 51 (4), 436-450 (2016)
Year 2016 Volume 51 Number 4 Pages 436-450
DOI 10.3103/S0025654416040075
Title Infinite Systems in Problems for a Stiffened Rectangular Plate
Author(s) M.F. Baburchenkov (Smolensk Auto Aggregate Plant AMO ZIL, ul. Gubenko 26, Smolensk, 214011 Russia,
N.M. Borodachev (National Aviation University, pr. Kosmonavta Komarova 1, Kiev, 03680 Ukraine)
Abstract A method is proposed for obtaining analytic solutions of a set of infinite systems of linear algebraic equations arising in problems of elasticity for stiffened rectangular plates with stiffening ribs. The method is based on a transformation of a set of infinite systems to a single system and on determining a majorant of the function generating the system series with regard to the order of the unknowns. It is proved that the constructed solution satisfies the infinite system for large indices of the unknowns. The amount of computations is decreased, and the reliability of the results increases. Some realization examples are given.
Keywords interaction mechanics, stiffened rectangular plate, infinite systems of equations
1.  V. M. Aleksandrov, "On a Method of Reducing Dual Integral Equations and Dual Series Equations to Infinite Algebraic Systems," Prikl. Mat. Mekh. 39 (2), 324-332 (1975) [J. Appl. Math. Mech. (Engl. Transl.) 39 (2), 303-311 (1975)].
2.  V. M. Alexandrov, "Analytic Methods in Problems for Finite Bodies with Improperly Mixed Boundary Conditions," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 51-57 (2014) [Mech. Solids (Engl. Transl.) 49 (2), 156-161 (2014)].
3.  L. A. Galin (Editor) The Development of Theory of Contact Problems in USSR (Nauka, Moscow, 1976) [in Russian].
4.  M. F. Baburchenkov and N. M. Borodachev, "Approach to Solving Plane Contact Problems for a Rectangular Domain," in Contemporary Problems of Mechanics and Aviation (Mashinostroenie, Moscow, 1982), pp. 55-64 [in Russian].
5.  B. M. Koyalovich, "Study of Infinite Systems of Linear Equations," Trudy Fiz.-Mat. Inst. im. Steklova 3, 41-167 (1930).
6.  B. M. Koyalovich, "To the Theory of Infinite Systems of Linear Equations (Answer to Prof. R. O. Kuz'min)," Trudy Fiz.-Mat. Inst. im. Steklova 2 (4), 1-16 (1932).
7.  R. O. Kuz'min, "To the Theory of Infinite Systems of Linear Equations," Trudy Fiz.-Mat. Inst. im. Steklova 2 (2), 18-41 (1931).
8.  V. T. Grinchenko, Equilibrium and Steady-State Oscillations of Finite-Dimensional Elastic Bodies (Naukova Dumka, Kiev, 1978) [in Russian].
9.  A. N. Tsvetkov and M. I. Chebakov, "An Efficient Technique for Solving a Class of Infinite Systems in Contact Problems in the Theory of Elasticity," Prikl. Mat. Mekh. 55 (2), 344-347 (1991) [J. Appl. Math. Mech. (Engl. Transl.) 55 (2), 279-282 (1991)].
10.  L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow-Leningrad, 1962; Interscience, New York, 1964).
11.  G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1979).
12.  E. Melan, "Ein Beitrag zur Theorie geschweisster Verbindungen," Ingenieur - Archiv 3 (2), 123-129 (1932)
13.  R. Muki and E. Sternberg, "On the Diffusion of Load from a Transverse Tension bar into a Semi-Infinite Elastic," Trans. ASME. Ser. E 35 (4), 737-746 (1968).
14.  B. L. Abramyan, "On a Contact Problem for Half-Plane," Izv. Nauk SSSR. Mekh. Tverd. Tela, No. 5, 4-10 (1972) [Mech. Solids (Engl. Transl.)].
15.  N. K. Arutunyan and S. M. Mkhitaryan, "Some Contact Problems for a Semi-Plane with Elastic Stiffeners," in Trends in Elasticity and Thermoelasticity, Witold Nowacki Anniversary Volume (Wolters, Noordhoff Publ., 1971), pp. 3-20.
16.  V. Yu. Salamatova, "Interaction of a Deformable Patch with a Stressed Strip," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 62-67 (2009) [Mech. Solids (Engl. Transl.) 44 (1), 57-61 (2009)].
17.  B. M. Nuller, "Contact Problems for Bar-Reinforced Strips and Rectangular Plates," Prikl. Mat. Mekh. 39 (3), 559-564 (1975) [J. Appl. Math. Mech. (Engl. Transl.) 39 (3), 534-539 (1975)].
18.  D. Bartuszat, "Beitrag zur Spannungsermittlung an Bleichfeldern mit eingeschweisster Aussteifung," ZIS - Mitteilungen 17 (9), 1025-1031 (1975).
19.  B. Budiansky and Wu Tai Te, "Transfer of Load to a Sheet from a Rivet - Attached Stiffener," J. Math. Phys. 40 (2), 142-162 (1961).
20.  L. S. Rybakov, "Contact Problems of Discrete Interaction of a Plate with a Rod," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 160-171 (1983) [Mech. Solids (Engl. Transl.)].
21.  E. I. Grigolyuk and V. M. Tolkachev, Contact Problems of Theory of Plates and Shells (Mashinostroenie, Moscow, 1980) [in Russian].
22.  I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1971) [in Russian].
23.  M. F. Baburchenkov, "Boundary Effect in Car Frame Components," Gruzovik. Transp. Kompl. Spetstekhn., No. 4, 33-37 (2013).
24.  V. Z. Vlasov, Thin-Walled Elastic Rods, (Fizmatgiz, Moscow, 1959) [in Russian].
Received 22 November 2013
Link to Fulltext
<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100