Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2016-4pp.424-435

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
V.V. Mokryakov, "Stress Concentration Localization in Doubly Periodic Square Systems of Circular Holes in Uniaxial Compression," Mech. Solids. 51 (4), 424-435 (2016)
Year 2016 Volume 51 Number 4 Pages 424-435
DOI 10.3103/S0025654416040063
Title Stress Concentration Localization in Doubly Periodic Square Systems of Circular Holes in Uniaxial Compression
Author(s) V.V. Mokryakov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia,
Abstract We consider the stress concentration points in infinite elastic doubly periodic perforated plates (lattices) under the conditions of external uniaxial compression. Special attention is paid to the internal localization of stress concentrations (i.e., to the case of stress concentration origination inside the material rather than on the boundaries of the holes). We consider a parametric domain (depending on the angle of application of the external load and the structure parameter of the lattice) and calculate the domain dimensions (the extreme values of the parameters). We discover a point in the parametric domain at which the following three cases of fracture initiation are possible: two cases on the hole contour and one case inside the material.
Keywords elasticity, doubly periodic lattice, circular holes, strength, stress concentration, compression, fracture initiation
1.  V. Ya. Natanson, "On Stresses in an Extended Plate Weakened by Equal Holes in Chessboard Arrangement," Mat. Sb. 42 (5), 616-636 (1935).
2.  R. C. J. Howland, "Stress in a Plate Containing an Infinite Row of Holes," Proc. Roy. Soc. London. Ser. A 148, 471-491 (1935).
3.  G. Horvay, "The Plain Strain Problem of Perforated Plates," J. Appl. Mech. 19, 355-360 (1952).
4.  R. Bailey and R. Hicks, "Behavior of Perforated Plates under Plane Stress," J. Mech. Engng Sci. 2 (2), 143-165 (1960).
5.  G. A. Van Fo Fi, "On a Solution of a Plane Doubly Periodic Problem of Elasticity," Dokl. Akad. Nauk UkrSSR, No. 9, 1152-1155 (1965).
6.  G. N. Savin, Stress Distribution near Holes (Naukova Dumka, Kiev, 1968) [in Russian].
7.  A. Rekik, M. Bornert, and F. Auslender, "A Critical Evaluation of Local Field Statistics Predicted by Various Linearization Schemes in Nonlinear Mean-Filed Homogenization," Mech. Mat. 54, 1-17 (2012).
8.  S. L. Parvanova, P. S. Dineva, and G. D. Manolis, "Dynamic Behavior of a Finite-Sized Elastic Solid with Multiple Cavities and Inclusions Using BIEM," Acta Mech. 224, 597-618 (2013).
9.  H. Saito, "Stress in a Plate Containing Infinite Parallel Rows of Holes," ZAMM 37 (3-4), 111-115 (1957).
10.  H. Martikka and E. Taitokari, "Design of Perforated Shell Drying Drums," Mech. Engng Res. 2 (2), 31-44 (2012).
11.  M. Isida and H. Igawa, "Analysis of a Zig-Zag Array of Circular Holes in an Infinite Solid under Uniaxial Tension," Int. J. Solids Struct. 27 (7), 849-864 (1991).
12.  K. Ting, K. T. Chen, and W. S. Yang, "Stress Analysis of the Multiple Circular Holes with the Rhombic Array Using Alternating Method," Int. J. Pressure Vessels Piping 76, 503-514 (1999).
13.  S. G. Mogilevskaya, S. L. Crouch, and J. Wang, "A Complex Boundary Integral Method for Multiple Circular Holes in an Infinite Plane," Engng Anal. Bound. Elem. 27, 789-802 (2003).
14.  W. J. O'Donnell and B. F. Langer, "Design of Perforated Plates," J. Engng Ind. 84, 1-13 (1962).
15.  J. E. Goldberg and K. N. Jabbour, "Stresses and Displacements in Perforated Plates," Nuclear Struct. Engng 2, 360-381 (1965).
16.  Su Shu-lan, Rao Qiu-hua, and He Yue-hui, "Theoretical Prediction of Effective Elastic Constants for New Intermetallic Compound Porous Material," Trans. Nonferrous Met. Soc. China 23, 1090-1097 (2013).
17.  E. I. Grigolyuk and L. A. Fil'shtinskii, Perforated Plates and Shells (Nauka, Moscow, 1970) [in Russian].
18.  N. I. Muskhelishvili, Several Fundamental Problems of Mathematical Theory of Elasticity (Nauka, Moscow, 1966) [in Russian].
19.  M. P. Savruk, Two-Dimensional Elasticity Problems for Bodies with Cracks (Naukova Dumka, Kiev, 1981) [in Russian].
20.  A. M. Lin'kov, Complex Method Of Boundary Integral Equations in Elasticity (Nauka, St. Petersburg, 1999) [in Russian].
21.  V. V. Mokryakov, Study of Strength of an Elastic Plane with an Infinite Quadratic Lattice of Circular Holes under Mechanical Loading, Preprint No. 1023 (IPMekh RAN, Moscow, 2012) [in Russian].
22.  V. V. Mokryakov, "Application of the Multipole Method to the Problem on Two Close Holes," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 129-145 (2007) [Mech. Solids (Engl. Transl.) 42 (5), 771-785 (2007)].
23.  V. V. Mokryakov, "Study of the Dependence of Effective Compliancies of a Plane with an Array of Circular Holes on Array Parameters," Vych. Mekh. Sploshn. Sred 3 (3), 90-101 (2010).
24.  V. V. Mokryakov, "Application of the Multipole Expansion Method for Calculating the Stress State in an Infinite Elastic Plane with Several Circular Holes," Vych. Mekh. Sploshn. Sred 5 (2), 168-177 (2012).
25.  R. V. Goldstein, V. V. Mokryakov, N. M. Osipenko, and P. S. Shushpannikov, "Application of the Multipole Expansion Method for Solving 2D- and 3D-Elasticity and Fracture Mechanics Problems for the Medium with Pores," in Proc. 5th Biot Conf. on Poromechanics (BIOT-5). July 10-12, 2013, Vienna, Austria, p. 131 (paper on CD: pp. 2297-2306).
26.  V. L. Kolmogorov, Stress. Deformations. Fracture (Metallurgiya, Moscow, 1970) [in Russian].
27.  R. V. Goldstein and P. S. Shushpannikov, "Application of the Method of Multiple Expansions in the 3D-Elasticity Problem for a Medium with Ordered System of Spherical Pores," ZAMM 89 (6), 504-510 (2009).
Received 20 January 2014
Link to Fulltext
<< Previous article | Volume 51, Issue 4 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100