Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2016-1pp.127-134

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 51, Issue 1 / 2016 | Next article >>
I.Ya. Zhbadinskii, "Interaction of One-Periodic Disk-Shaped Cracks under an Incident Elastic Harmonic Wave," Mech. Solids. 51 (1), 127-134 (2016)
Year 2016 Volume 51 Number 1 Pages 127-134
DOI 10.3103/S002565441601012X
Title Interaction of One-Periodic Disk-Shaped Cracks under an Incident Elastic Harmonic Wave
Author(s) I.Ya. Zhbadinskii (Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, ul. Naukova 3b, Lvov, 79060 Ukraine, zhbadynskyi.igor@gmail.com)
Abstract We study a symmetric problem of harmonic wave propagation in an elastic space with a one-periodic array of interacting disk-shaped cracks. Using the Green function obtained by the Fourier transform, we reduce the problem to a boundary integral equation (BIE) for the function characterizing the displacement discontinuity on one of the cracks and numerically determine the desired function by solving the BIE. We present graphs of the dynamic stress intensity factors near a circular crack versus the wave number for various distances between the defects.
Keywords elastic space, periodic arrays of disk-shaped cracks, periodic Green function, harmonic elastic wave, dynamic stress intensity factors, boundary integral equation method
References
1.  R. V. Goldstein and N. M. Osipenko, "On a Model of Structured Medium Fracture under Compression Conditions," Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 86-97 (2010) [Mech. Solids (Engl. Transl.) 45 (6), 835-843 (2010)].
2.  I. P. Laushnik and M. V. Khai, "Three-Dimensional Problem of Thermoelasticity for a Body with a Periodic System of Disk-Shaped Cracks," Prikl. Mekh. 16 (4), 29-34 (1980).
3.  V. Buryachenko, Micromechanics of Heterogeneous Materials (Springer, New York, 2006).
4.  L. I. Manevich, I. V. Andrianov, V. G. Oshmyan, Mechanics of Periodically Heterogeneous Structures (Springer, Berlin-Heidelberg, 2002).
5.  Ch. Zhang and D. Gross, On Wave Propagation in Elastic Solids with Cracks (Computational Mechanics Publ., Southampton, 1998).
6.  Y. Murai, "Scattering Attenuation, Dispersion and Reflection of SH Waves in Two-Dimensional Elastic Media with Densely Distributed Cracks," Geophys. J. Int. 168 (1), 211-223 (2007).
7.  Y. Bao and X. Wang, "Identification of Multiple Cracks Based on Optimization Methods Using Harmonic Elastic Waves," Int. J. Fract. 172, 77-95 (2011).
8.  E. Scarpetta, "In-Plane Problem for Wave Propagation through Elastic Solids with a Periodic Array of Cracks," Acta Mech. 154 (4), 179-187 (2002).
9.  E. Scarpetta and V. Tibulio, "P-Wave Propagation through Elastic Solids with a Doubly Periodic Array of Cracks," Quart. J. Mech. Appl. Math. 58 (4), 535-550 (2005).
10.  Y. Otani and N. Nishimura, "An FMM for Periodic Boundary Value Problems for Cracks for Helmholtz' Equation in 2D," Int. J. Numer. Meth. Engng 73, 381-406 (2007).
11.  Y. Pennec, J. O. Vasseur, B. D. Rouhani, et al., "Two-Dimensional Phononic Crystals: Examples and Applications," Surf. Sci. Rep. 65 (8), 229-291 (2010).
12.  Zh. Yan and Ch. Zhang, "Wave Localization in Two-Dimensional Porous Phononic Crystals with One-Dimensional Aperiodicity," Ultrasonics 52 (5), 598-604 (2012).
13.  F.-L. Li, Y.-S. Wang, Ch. Zhang, and G.-L. Yu, "Boundary Element Method for Band Gap Calculation of Two-Dimensional Solid Phononic Crysrals," Engng Anal. Bound. Elem. 37, 225-235 (2013).
14.  E. I. Shifrin, Spatial Problems of Linear Fracture Mechanics (Fizmatlit, Moscow, 2002) [in Russian].
15.  V. V. Mykhas'kiv, Ch. Zhang, J. Sladek, and V. Sladek, "A Frequency Domain BEM for 3-D Non-Synchronous Crack Interaction Analysis in Elastic Solids," Engng Anal. Bound. Elem. 30 (3), 167-175 (2006).
16.  V. V. Mykhas'kiv, I. Zhbadynskyi, and Ch. Zhang, "Elastodynamic Analysis of Multiple Crack Problem in 3-D Bi-Materials by a BEM," Int. J. Numer. Mech. Biomed. Engng 26 (12), 1934-1946 (2010).
17.  V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies (Naukova Dumka, Kiev, 1981) [in Russian].
18.  H. S. Kit, M. V. Khaj, and V. V. Mykhas'kiv, "Analysis of Dynamic Stress Concentration in an Infinite Body with Parallel Penny-Shaped Cracks by BIEM," Engng Fract. Mech. 55 (2), 191-207 (1996).
19.  I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatgiz, Moscow, 1971) [in Russian].
Received 17 August 2013
Link to Fulltext
<< Previous article | Volume 51, Issue 1 / 2016 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100