| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 50, Issue 5 / 2015 | Next article >> |
N.G. Burago, I.S. Nikitin, and P.A. Yushkovskii, "Lifetime of Disks of Variable Thickness with Anisotropy of Fatigue Properties Taken into Account," Mech. Solids. 50 (5), 546-558 (2015) |
Year |
2015 |
Volume |
50 |
Number |
5 |
Pages |
546-558 |
DOI |
10.3103/S0025654415050064 |
Title |
Lifetime of Disks of Variable Thickness with Anisotropy of Fatigue Properties Taken into Account |
Author(s) |
N.G. Burago (A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia; Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, burago@ipmnet.ru)
I.S. Nikitin (Institute of Design Automation, Russian Academy of Sciences, ul. 2-ya Bratskaya 19/18, Moscow, 123056 Russia; Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5, Moscow, 105005 Russia, i_nikitin@list.ru)
P.A. Yushkovskii (MATI - K. E. Tsiolkovsky Russian State Technological University, ul. Orshanskaya 3, Moscow, 121552 Russia) |
Abstract |
A generalization of well-known criteria for multiaxial fatigue fracture to the case of titanium alloys with anisotropic fatigue properties is proposed. The problem of determining the stress-strain state and estimating the fatigue life of a rotating disk of variable thickness under the action of centrifugal loads in the disk and blades is solved. The proposed criteria for multiaxial fatigue fracture are used to obtain spatial lifetime distributions over the disk in the isotropic and anisotropic cases. It was shown that the fatigue life of the titanium disk with the anisotropy of the fatigue properties taken into account can decrease to the critical values of $N$, $10^4$ cycles near the outer rim of the disk in the region of contact with blades, which is inadmissible from the standpoint of safe operation. |
Keywords |
fatigue fracture, anisotropy, fatigue life, compressor disk, centrifugal load, aerodynamic pressure |
References |
1. | N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin, "Analysis of
Stress State of GTE `Disk-Blade' Contact System," Vych. Mekh.
Sploshn. Sred 4 (2), 5-16 (2011). |
2. | N. N. Beklemishev, N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin,
"Aeroelastic Analysis of Structure Elements of a Compressor,"
Vestnik MAI
18 (5), 3-22 (2011). |
3. | G. Sines,
"Behavior of Metals under Complex Static and Alternating Stress,"
in Metal Fatigue
(McGraw-Hill, London, 1958),
pp. 145-169. |
4. | B. Crossland,
"Effect of Large Hydrostatic Pressures on Torsional Fatigue Strength of an Alloy Steel,"
in Proc. Int. Conf. on Fatigue of Metals
(London, 1956),
pp. 138-149. |
5. | A. Carpinteri, A. Spagnoli, and S. Vantadori,
"Multiaxial Assessment Using a Simplified Critical Plane-Based Criterion,"
Int. J. Fatigue
33, 969-976 (2011). |
6. | A. Carpinteri, A. Spagnoli, S. Vantadori, and C. Bagni,
"Structural Integrity Assessment of Metallic Components under Multiaxial Fatigue:
The C-S Criterion and Its Evolution,"
Fatigue Fract. Engng Mater. Struct.
36, 870-883 (2013). |
7. | L. Susmel and D. Taylor,
"A Critical Distance/Plane Method to Estimate Finite Life of Notched Components
under Variable Amplitude Uniaxial/Multiaxial Fatigue Loading,"
Int. J. Fatigue
38, 7-24 (2012). |
8. | W. Findley,
"A Theory for the Effect of Mean Stress on Fatigue of Metals
under Combined Torsion and Axial Load or Bending,"
J. Engng Indust.,
301-306 (2959). |
9. | N. G. Burago, I. S. Nikitin, A. A. Shanyavskii, and A. B. Zhuravlev,
"Durability Estimations for In-Service Titanium Compressor Disks
to Multiaxial Cyclic Loads in Low- and Very-High-cyclic Fatigue Regimes,"
in Proc. 19th European Conference on Fracture, Kazan 26-31 August 2012,
(CD ver.),
Auth. Ind. 154. |
10. | R. Hill,
The Mathematical Theory of Plasticity
(Clarendon Press, Oxford, 1950; Gostekhizdat, Moscow, 1956)
[in Russian]. |
11. | D. V. Toporov, B. V. Ilchenko, and R. R. Yarulin,
"Characteristics of Static and Low-Cyclic Strength of Critical Zones of Turbine Disk,"
Trudy Akademenergo,
No. 2, 79-88 (2010). |
12. | V. N. Shlyannikov, R. R. Yarullin, and R. Z. Gizzatullin,
"Structural Integrity Prediction of Turbine Disk on a Critical Zone Concept Basis,"
in Proc. 11th International Conference on Engineering Structural Integrity Assessment. ESIA11, Manchester UK
(EMAS Publ. 2011),
pp. 1-10. |
13. | B. V. Ilchenko, R. R. Yarulin, A. P. Zakharov, and R. Z. Gizzatullin,
"Residual Life Prediction of Power Steam Turbine Disk with Fixed Operating Time,"
in Proc. 19th European Conference on Fracture, ECG19, Kazan, Russia,
26-31 August 2012,
(Kazan', 2012)
pp. 1-8. |
14. | I. V. Dem'yanushko and I. A. Birger,
Strength Computation of Rotating Disks
(Mashinostroenie, Moscow, 1978)
[in Russian]. |
15. | N. G. Burago, A. B. Zhuravlev, and I. S. Nikitin,
"Superpower Cyclic Fatigue Fracture of Compressor Titanium Disks,"
Vetnik PNIPU, Mekhanika,
No. 1, 52-67 (2013). |
16. | N. G. Bourago, A. B. Zhuravlev, and I. S. Nikitin,
"Models of Multiaxial Fatigue Fracture
and Service Life Estimation of Structural Elements,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 6, 22-33 (2011)
[Mech. Solids (Engl. Transl.)
46 (6), 828-838 (2011)]. |
17. | A. A. Shanyavskii,
Modeling of Metal Fatigue fracture
(OOO "Monografiya", Ufa, 2007)
[in Russian]. |
18. | A. A. Il'in, B. A. Kolachev, and I. S. Pol'kin,
Titanium Alloys, Composition, Structure, Properties
(VILS-MATI, Moscow, 2009)
[in Russian]. |
19. | I. V. Gorynin and B. B. Chechulin,
Titanium in Engineering Industry
(Mashinostroenie, Moscow, 1990)
[in Russian]. |
20. | A. Sommer, M. Kriger, S. Fudzisiro, and D. Eilon,
"Texture Development in α+β-Titanium Alloys,"
in Titanium. Physical Metallurgy and Technology.
Proc. 3rd Intern. Conf. on Titanium, Vol. 3
(VILS, Moscow, 1978),
pp. 87-96
[in Russian]. |
21. | A. K. Marmi, A. M. Habraken, and L. Duchene,
"Multiaxial Fatigue Damage Modeling at Marco Scale of Ti6Al4V Alloy,"
Int. J. Fatigue
31, 2031-2040 (2009). |
22. | A. K. Marmi, A. M. Habraken, and L. Duchene,
"Multiaxial Fatigue Damage Modeling of Ti6Al4V Alloy,"
in Proc. 9th Int. Conf. on Multiaxial Fatigue
and Fracture (ICMFF9), Parma, Italy, 2010
(Parma, 2010),
pp. 559-567. |
23. | I. A. Birger and Ya. G. Panovko (Editors),
Strength. Stability. Oscillations, Vol. 1
(Mashinostroenie, Moscow, 1990)
[in Russian]. |
24. | I. A. Birger,
Beams, Plane, and Shells
(Fitmatlit, Moscow, 1992)
[in Russian]. |
25. | A. G. Kostyuk,
Dynamics and Turbomachine Strength
(Izdat. Dom MEI, Moscow, 2007)
[in Russian]. |
26. | A. A. Inozemtsev, M. A. Nikhamkin, V. L. Sandratskii,
Dynamic and Strength of Aircraft Engines and Power Plants
(Mashinostroenie, Moscow, 2008)
[in Russian]. |
27. | A. M. Mkhitaryan,
Aerodynamics
(Mashinostroenie, Moscow, 1976)
[in Russian]. |
28. | N. E. Kochin, I. A. Kibel', N. V. Roze,
Theoretical Hydromechanics, Part 1
(Fizmatgiz, Moscow, 1963)
[in Russian]. |
29. | M. I. Gurevich,
Theory of Perfect Liquid Jets
(Nauka, Moscow, 1979)
[in Russian]. |
30. | N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, and
P. A. Yushkovskii, Influence of Anisotropy of Fatigue
Properties of a Titanium Alloy on Lifetime of Structural
Elements, Preprint No. 1064 (IPMekh RAN, Moscow, 2014) [in Russian]. |
31. | Yu. N. Rabotnov,
Mechanics of Deformable Solids
(Nauka, Moscow, 1979)
[in Russian]. |
32. | W. Nowacki,
Theory of Elasticity
(PWN, Warszawa, 1970; Mir, Moscow, 1975). |
33. | V. N. Kukudzhanov,
Computational Mechanics of Continua
(Fizmatlit, Moscow, 2006)
[in Russian]. |
|
Received |
27 February 2014 |
Link to Fulltext |
|
<< Previous article | Volume 50, Issue 5 / 2015 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|