Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-4pp.389-396

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
S.E. Aleksandrov and R.V. Goldstein, "Motion of a Rigid Bar in a Rigid-Viscoplastic Medium: The Influence of the Model Type on the Solution Behavior," Mech. Solids. 50 (4), 389-396 (2015)
Year 2015 Volume 50 Number 4 Pages 389-396
DOI 10.3103/S0025654415040044
Title Motion of a Rigid Bar in a Rigid-Viscoplastic Medium: The Influence of the Model Type on the Solution Behavior
Author(s) S.E. Aleksandrov (A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, sergei_alexandrov@yahoo.com)
R.V. Goldstein (A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, goldst@ipmnet.ru)
Abstract The paper deals with rigid-plastic materials satisfying the von Mises plasticity condition under the assumption that their yield point in pure shear depends only on the equivalent strain rate (rigid-viscoplastic material models). The rigid-viscoplastic models are classified by the yield point behavior in pure shear as the equivalent strain rate tends to zero or infinity. All in all, four classes of rigid-viscoplastic material models are distinguished. For each of these classes of material models, the solution is constructed for the translational motion of an axisymmetric rigid bar along its symmetry axis in a rigid-plastic medium. It is assumed that the maximum friction law acts on the surface of contact between the bar and the rigid-viscoplastic medium. It is shown that the solutions provided by models of different classes qualitatively differ from each other. A qualitative comparison with experimental results known in the literature is carried out. It is shown that predicting the formation of an intensive plastic deformation layer near the friction surface, which is observed in experiments, is possible if the rigid-viscoplastic model contains the saturation stress (the stress, bounded in magnitude, to which the yield point in pure shear tends as the equivalent strain rate tends to infinity).
Keywords rigid viscoplasticity, types of models, rigid bar, analytic solution, boundary layer
References
1.  A. A.Il'yushin, "To the Problem of Viscoplastic Flow of a Material," in Collective Works, Vol. 1 (1935-1945) (Fizmatlit, Moscow, 2004), pp. 115-131 [in Russian].
2.  P. P. Mosolov and V. P. Myasnikov, Mechanics of Rigidplastic Media (Nauka, Moscow, 1981) [in Russian].
3.  N. N. Malinin, Creep in Metal Working (Mashinostroenie, Moscow, 1986) [in Russian].
4.  V. Sanabria, S. Mueller, S. Gall, and W. Reimers, "Investigation of Friction Boundary Conditions during Extrusion of Aluminium and Magnesium Alloys," Key Engng Mater. 611-612, 997-1004 (2014).
5.  B. J. Griffiths, "Mechanism of White Layer Generation with Reference to Machining and Deformation Processes," Trans ASME. J. Trib. 109, 525-530 (1987).
6.  T. Murai, S. Matsuoka, S. Miyamoto, and Y. Oki, "Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusion," J. Mater. Process. Technol. 141, 207-212 (2003).
7.  A. A. Milenin, S. Berski, G. Banaszek, and H. Dyja, "Theoretical Analysis and Optimization of Parameters in Extrusion Process of Explosive Cladded Bimetallic Rods," J. Mater. Process. Technol. 157-158, 208-212 (2004).
8.  S. Kajino and M. Asakawa, "Effect of "Additional Shear Strain Layer" on Tensile Strength and Miscostructure of Fine Drawn Wire," J. Mater. Process. Technol. 177, 704-708 (2006).
9.  T. A. Trunina and E. A. Kokovikhin, "Formation of Highly Dispersed Structure in Surface Layers of Steel under Combined Treatment with Hydraulic Forging," Probl. Mashinostr. Nadezhn. Mashin., No. 2, 71-74 (2008).
10.  S. E. Aleksandrov, D. Z. Grabko, and O. A. Shikimakha, "To the Determination of Intensive Strain Layer Thickness near the Friction Surface in Metal Forming Processes," Probl. Mashinostr. Nadezhn. Mashin., No. 3, 72-78 (2009).
11.  T. T. Sasaki, R. A. Morris, G. B. Thompson, et al., "Formation of Ultra-Fine Copper Grains in Copper-Clad Aluminum Wire," Scripta Mater. 63, 488-491 (2010).
12.  M. Thirumurugan, S. A. Rao, S. Kumaran, and T. S. Rao, "Improved Ductility in ZM21 Magnesium-Aluminium Macrocomposite Produced by Co-Extrusion," J. Mater. Process. Technol. 211, 1637-1642 (2011).
13.  X. Li, G. Zu, M. Ding, et al., "Interfacial Microstructure and Mechanical Properties of Cu/Al Clad Sheet Fabricated by Asymmetrical Roll Bonding and Annealing," Mater. Sci. Technol. 529A, 485-491 (2011).
14.  R. V. Goldstein and S. E. Aleksandrov, "An Approach to the Prediction of Material Microstructure Formation near the Friction Surface under Developed Strains," Fiz. Mezomekh. 17 (5), 15-20 (2014).
15.  S. E. Aleksandrov and R. V. Goldstein, "On Constructing Constitutive Equations in Material Thin Layer near Friction Surfaces in Material Forming Processes," Dokl. Ross. Akad. Nauk 460 (3), 283-285 (2015) [Dokl. Phys. (Engl. Transl.) 60 (1), 39-41 (2015)].
16.  S. Alexandrov and O. Richmond, "Singular Plastic Flow Fields near Surfaces of Maximum Friction Stress," Int. J. Non-Lin. Mech. 36 (1), 1-11 (2001).
17.  N. Gurung, "1-D Analytic Solution for Extensible and Inextensible Soil/Rock Reinforcement in Pull-out Tests," Geotext. Geomembr. 19, 195-212 (2001).
18.  B. Banhoilzer, W. Brumeshuber, and W. Jung, "Analytical Simulation of Pull-Out Tests - the Direct Problem," Cement & Concr. Compos. 27, 93-101 (2005).
19.  B. Banhoilzer, W. Brumeshuber, and W. Jung, "Analytical Evaluation of Pull-Out Tests - the Inverse Problem," Cement & Concr. Compos. 28, 564-571 (2006).
20.  L. Bouazaoui and A. Li, "Analysis of Steel/Concrete Interfacial Shear Stress by Means of Pull-Out Test," Int. J. Adhesion & Adhesives 28, 101-108 (2008).
21.  L. B. Martin, M. Tijani, and F. Hadj-Hassen, "A New Analytical Solution to the Mechanical Behavior of Fully Grouted Rockbolts Subjected to Pull-Out Tests," Construct. Build. Mater. 25, 749-755 (2011).
22.  S. E. Aleksandrov and R. V. Goldstein, "Pull-Out of a Rigid Fibre from an Elastoplastic Matrix," Prikl. Mat. Mekh. 64 (1), 160-166 (2000) [J. Appl. Math. Mech. (Engl. Transl.) 64 (1), 155-161 (2000)].
23.  J. G. Oldroyd, "Non-Newtonian Flow of Liquids and Solids," in Rheology: Theory and Applications, Ed. by F. R. Eirich, Vol. 1 (Academic Press, New York, 1956), pp. 653-682.
24.  J. M. Dealy and K. F. Wissbrun, Melt Rheology and Its Role in Plastic Processing (Van Nostrand Reinhold, New York, 1990).
25.  E. Mitsoulis and S. G. Hatzikiriakos, "Capillary Extrusion Flow of a Fluropolymer Melt," Int. J. Mater. Form. 6, 29-40 (2013).
26.  S. A. Shesterikov and M. A. Yumasheva, "Specification of Equation of State in Creep Theory," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 86-91 (1984) [Mech. Solids. (Engl. Transl.)].
27.  S. E. Aleksandrov, V. L. Danilov, and N. N. Chikanova, "On the Stagnation Zone in a Simulation of Axisymmetric Pressure Metal Forming under Creep," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 149-151 (2000) [Mech. Solids (Engl. Transl.) 35 (1), 127-129 (2000)].
28.  S. Alexandrov and N. Alexandrova, "On the Maximum Friction Law in Viscoplasticity," Mech. Time-Depend. Mater. 4 (1), 99-104 (2000)
29.  A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965) [in Russian].
Received 16 May 2015
Link to Fulltext
<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100