Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-5pp.508-520

Archive of Issues

Total articles in the database: 12937
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4853

<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
S.V. Kuznetsov and E.O. Terent'eva, "Wave Fields and Domination Regions for the Interior Lamb Problem," Mech. Solids. 50 (5), 508-520 (2015)
Year 2015 Volume 50 Number 5 Pages 508-520
DOI 10.3103/S0025654415050039
Title Wave Fields and Domination Regions for the Interior Lamb Problem
Author(s) S.V. Kuznetsov (A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, kuzn-sergey@yandex.ru)
E.O. Terent'eva (Moscow State University of Civil Engineering, Yaroslavskoe sh. 26, Moscow, 129337 Russia)
Abstract The domination regions of wave fields in the epicentral region are analyzed for the interior Lamb problem on the action of a lumped force applied inside an elastic half-plane. The solutions obtained by integral representations and finite-element approximations are compared. The domination regions are distinguished for the first time for all types of acoustic waves observed near the epicenter.
Keywords Lamb problem, surface wave, decaying wave, epicenter
References
1.  H. Lamb, "On the Propagation of Tremors over the Surface of an Elastic Solid," Phil. Trans. Roy. Soc. London 203, 1-42 (1904).
2.  H. Lamb, "On Waves due to a Travelling Disturbance with an Application to Waves in Superposed Fluids," Phil. Mag. 13, 386-399, 539-548 (1916).
3.  W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).
4.  J. W. Strutt, "On Wave Propagating along the Plane Surface of an Elastic Solid," Proc. London Math. Soc. 17, 4-11 (1885).
5.  M. E. Gurtin, The Linear Theory of Elasticity, in Handbuch der Physik, Vol. VIa/II (Springer, 1972).
6.  H. Nakano, "Some Problems Concerning the Propagation of the Distrubances in and on Semi-Infinite Elastic Solid," Geophys. Mag. 2, 189-348 (1930).
7.  H. Nakano, "On Rayleigh Waves," Japan J. Astron. Geophys. 2, 233-326 (1925).
8.  E. R. Lapwood, "The Disturbance due to a Line Source in a Semi-Infinite Elastic Medium," Phil. Trans. Roy. Soc. London. Ser. A 242, 63-100 (1949).
9.  L. Cagniard, Reflexion et Refraction des Ondes Seismiques Progressives (Gauthier-Villars, Paris, 1939).
10.  A. T. de Hoop, "A Modification of Cagniard's Method for Solving Seismic Pulse Problems," Appl. Sci. Res. Sect. Ser. B 8 (4), 349-356 (1960).
11.  A. T. de Hoop, "Theoretical Determination of the Surface Motion of a Uniform Elastic Half-Space Produced by a Dilatational Impulsive Point Source," in La Propagation des Ebranlements dans les Milieus Heterogenes. Colloques Internationaux du Centre National de la Recherche Scientique (Marseille, 1961), pp. 21-32.
12.  W. W. Garvin, "Exact Transient Solution of the Buried Line Source Problem," Proc. Roy. Soc. 234, 528-541 (1956).
13.  F. Sanchez-Sesma and U. Iturraran-Viveros, "The Classic Garvin's Problem Revisited," Bull. Seismol. Soc. Am. 96, 1344-1351 (2006).
14.  F. Sanchez-Sesma, U. Iturraran-Viveros, and E. Kausel, "Garvin's Generalized Problem Revisited," Soil Dyn. Earthq. Engng 47, 4-15 (2013).
15.  D. P. Williams and R. V. Craster, "Cagniard-de Hoop Path Perturbations with Applications to Nongeometric Wave Arrivals," J. Engng Math. 37, 253-272 (2000).
16.  C. L. Pekeris, "The Seismic Surface Pulse," Proc. Nat. Acad. Sci. USA 41, 469-480 (1955).
17.  C. L. Pekeris, "The Seismic Buried Pulse," Proc. Nat. Acad. Sci. USA 41, 629-639 (1955).
18.  C. L. Pekeris and H. Lifson, "Motion of the Surface of a Uniform Elastic Half-Space Produced by a Buried Pulse," J. Acoust. Soc. Am. 29, 1233-1238 (1957).
19.  C. L. Pekeris and I. M. Longman, "The Motion of the Surface of a Uniform Elastic Half-Space Produced by a Buried Torque-Pulse," Geophys. J. 1, 146-153 (1958).
20.  C. L. Pekeris, F. Abramovici, and Z. Alterman, "Propagation of an SH-Torque Pulse in a Layered Solid," Bull. Seismol. Soc. Am. 53, 39-57 (1963).
21.  E. Pinney, "Surface Motion due to a Point Source in a Semi-Infinite Elastic Meidum," Bull. Seismol. Soc. Am. 44, 571-596 (1954).
22.  R. G. Payton, "Transient Motion of an Elastic Half-Space due to a Moving Surface Line Load," Int. J. Engng Sci. 5, 49-79 (1967).
23.  R. G. Payton, "Epicenter Motion of an Elastic Half-Space due to Buried Stationary and Moving Line Sources," Int. J. Solids Struct. 4, 287-300 (1968).
24.  R. G. Payton, "Epicenter Motion of a Transversely Isotropic Elastic Half-Space due to a Suddenly Applied Buried Point Source," Int. J. Engng Sci. 17, 879-887 (1979).
25.  L. R. Johnson, "Green's Function for Lamb's Problem," Geophys. J. Roy. Astron. Soc. 37, 99-131 (1974).
26.  R. Sato, "Seismic Waves in the Near Field," J. Phys. Earth. 20, 357-375 (1972).
27.  I. Kawasaki, Y. Suzuki, and R. Sato, "Seismic Waves due to Double Couple Source in a Semi-Infinite Space. Part 1," Zisin. 25, 207-217 (1972).
28.  I. Kawasaki, Y. Suzuki, and R. Sato, "Seismic Waves due to Double Couple Source in a semi-Infinite Space. Part 2," Zisin. 25, 333-342 (1972).
29.  E. Kausel, Fundamental Solutions of Elastodynamics (Cambridge Univ. Press., New York, 2006).
30.  G. I. Petrashen', "On Lamb's Problem for an Elastic Half-Space," Dokl. Akad. Nauk SSSR 64 (5), 649-652 (1949).
31.  G. I. Petrashen', G. I. Marchuk, and K. I. Ogurtsov, "On Lamb's Problem for a Half-Space," Uch. Zap. Len. Gos. Univ., Ser. Mat., No. 21 (135), 71-118 (1950).
32.  K. I. Ogurtsov and G. I. Petrashen', "Dynamic Problems for Elastic Half-Space in the Case of Axial Symmetry," Uch. Zap. Len. Gos. Univ., Ser. Mat., No. 24 (149), 3-117 (1951).
33.  N. I. Onis'ko and E. I. Shemyakin, "Motion of Free Surface of Homogeneous Soil due to Underground Explosion," Zh. Prikl. Mekh. Tekhn. Fiz., No. 4, 82-93 (1961) [J. Appl. Mech. Tech. Phys. (Engl. Transl.)].
34.  V. I. Smirnov and S. L. Sobolev, On a New Method in the Plane Problem on Elastic Vibrations, Trudy Seismolog. Inst. AN SSSR, No. 20 (1932) [Tr. Seism. Inst. (French Transl.), No. 20 (1932); in G. V. Demidenko and V. L. Vaskevich (Editors), Selected Works of S. L. Sobolev, Volume I: Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas (Springer, New York, 2006), pp. 45-80 (Engl. Transl.)].
35.  V. I. Smirnov and S. L. Sobolev, "On Application of a New Method to Study Elastic Vibrations in a Space with Axial Symmetry," Trudy Seismolog. Inst. AN USSR, No. 29 (1933) [Tr. Seism. Inst. (French Transl.), No. 29 (1933); in G. V. Demidenko and V. L. Vaskevich (Editors), Selected Works of S. L. Sobolev, Volume I: Equations of Mathematical Physics, Computational Mathematics, and Cubature Formulas (Springer, New York, 2006), pp. 81-130 (Engl. Transl.)]
36.  P. D. Lax and B. Wendroff, "Difference Schemes for Hyperbolic Equations with High Order of Accuracy," Comm. Pure Appl. Math. 17, 381-398 (1964).
37.  B. Wendroff, Theoretical Numerical Analysis (Academic Press, New York, 1967).
38.  B. A. Finlayson, Numerical Methods for Problems with Moving Fronts (Ravenna Park Pub, 1992).
39.  N. Holmes and T. Belytschko, "Postprocessing of Finite Element Transient Response Calculations by Digital Filters," Comp. Struct. 6, 211-216 (1976).
40.  P. Moczo, E. Bystrick'y, J. Kristek, et al., "Hybrid Modeling of P-SV Seismic Motion at Inhomogeneous Viscoelastic Topographic Structures," Bull. Seism. Soc. Am. 87 (5), 1305-1323 (1997).
41.  A. R. Levander, "Fourth-Order Finite-Difference P-SV Seismographs," Geophys. 53, 1425-1436 (1988).
42.  P. Moczo, J. Kristek, V. Vavrycuk, et al., "3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities," Bull. Seism. Soc. Am. 92 (8), 3042-3066 (2002).
43.  M. Shuo, R. J. Archuleta, and P. Liu, "Hybrid Modeling of Elastic P-SV Wave Motion: A Combined Finite-Element and Staggered-Grid Finite-Difference Approach," Bull. Seism. Soc. Am. 94 (4), 1557-1563 (2004).
44.  A. V. Kravtsov, S. V. Kuznetsov, and S. Ya. Sekerzh-Zen'kovich, "Finite Element Models in Lamb's Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 160-169 (2011) [Mech. Solids (Engl. Transl.) 46 (6), 952-959 (2011)].
Received 01 April 2014
Link to Fulltext
<< Previous article | Volume 50, Issue 5 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100