Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-4pp.473-484

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
D.V. Georgievskii and M.Sh. Israilov, "Seismodynamics of Extended Underground Structures and Soils: Statement of the Problem and Self-Similar Solutions," Mech. Solids. 50 (4), 473-484 (2015)
Year 2015 Volume 50 Number 4 Pages 473-484
DOI 10.3103/S0025654415040135
Title Seismodynamics of Extended Underground Structures and Soils: Statement of the Problem and Self-Similar Solutions
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, Moscow, 119992 Russia, georgiev@mech.math.msu.su)
M.Sh. Israilov (Academician Millionschikov Grozny State Oil Technical University, ul. A. Avtorkhanova 14/53, Groznyy, Chechenskaya resp., 364052 Russia; Research Institute of Mathematical Physics and Seismodynamics, Chechen State University, ul. Kievskaya 33, Groznyy, Chechenskaya resp., 364037 Russia, israiler@hotmail.com)
Abstract In the problems of common vibrations of extended underground structures (pipelines and tunnels) and soil, an approach of the one-dimensional deformation of the medium is developed; this approach is based on the assumption that the soil deformation in the direction of seismic wave propagation coinciding with the pipeline axis is prevailing. The analytic solutions are obtained in the cases where the wave velocity in the soil is respectively less or greater than the wave velocity in the pipeline. The parameters influencing the pipeline fracture are revealed and methods for increasing the seismic stability of such structures are given. The possibility of the pipeline fatigue fracture is pointed out.

The statements and solutions of parabolic problems modeling the physical phenomena in soils in the case of discontinuous velocity on the boundaries at the initial time are given. The notion of generalized vorticity diffusion is introduced and the cases of self-similarity existence are classified. A detailed analysis is performed for the non-Newtonian polynomial fluid, the medium close in properties to the rigidly ideally plastic body, and the viscoplastic Shvedov-Bingham body.

In the case of physically linear medium, new self-similar solutions are obtained which describe the process of unsteady axially symmetric shear in spherical coordinates. The first approximation to the asymptotic solution of the problem of the vortex sheet diffusion is constructed in a medium with small polynomial nonlinearity. The solutions polynomially decreasing to zero as the self-similar variable increases are proposed in the class of two-constant fluids.
Keywords seismodynamics, underground pipeline, soils, vortex sheet diffusion
References
1.  N. H. Newmark, "Problems in Wave Propagation in Soil and Rock," in Proc. of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials. Univ. of New Mexico Press (New Mexico Press, 1968).
2.  G. Yeh, "Seismic Analysis of Slender Buried Beams," Bull. Seismolog. Soc. Am. 64 (5), 1551-1562 (1974).
3.  L. B. Wang and M. J. O'Rourke, "Overview of Buried Pipelines under Seismic Loading," J. Tech. Councils ASCE 104 (TC1), 121-130 (1978).
4.  K. Kubo, "Behavior of Underground Water Pipes during an Earthquake," in Proc. 5th World Conf. Earthq. Engng. Italy, Rome (Rome, 1974), pp. 569-578.
5.  A. Sakurai and T. Takahashi, "Dynamic Stress of Underground Pipelines during Earthquakes," in Proc. 4th World Conf. Earthq. Engng. Chile: Santiago (Santiago, 1969), pp. 81-95.
6.  M. Shinozuka and T. Koike, "Estimation of Structural Strains in Underground Lifeline Pipes," in Lifeline Earthq. Engng - Buried Pipelines, Seismic Risks, and Intrumentation. PVP-34 (ASME, 1979), pp. 31-48.
7.  T. Akiyoshi and K. Fuchida, "Seismic Interaction of Soil-Pipeline System through the Frictional Interface," in Proc. 8th World Conf. Earthq. Engng. USA: San Francisco (San Francisco, 1984), pp. 199-206.
8.  M. Nowak and A. Hindy, "Seismic Analysis of Underground Tubular Structures," in Proc. 7th World Conf. Earthq. Engng. Turkey: Istambul (Istambul, 1980), pp. 287-294.
9.  M. J. O'Rourke and K. E. El Hmadi, "Analysis of Continuous Buried Pipelines for Seismic Wave Effects," Earthq. Engng Struct. Dyn. 16, 917-929 (1988).
10.  G. A. Mavridis and K. D. Pitilakis, "Axial and Transverse Seismic Analysis of Buried Pipelines," in Proc. 11th World Conf. Earthq. Engng. Mexico (Mexico, 1996), Paper 1605.
11.  J. P. Dwivedi, V. P. Singh, and R. C. Lal, "Dynamic Analysis of Buried Pipelines under Linear Viscoelastic Soil Conditions," Adv. Theoret. Appl. Mech. 3 (12), 551-558 (2010).
12.  S. Takada, "Earthquake Resistant Design of Underground Pipelines," in Proc. 6th World Conf. Earthq. Engng. India: New Delhi (New Delhi, 1977), pp. 3376-3381.
13.  L. R.-L. Wang, "Parametric Investigation of Buried Pipelines under Seismic Environments," in Proc. 8th World Conf. Earthq. Engng. USA: San Francisco (San Francisco, 1984), pp. 483-490.
14.  D. Bouziou, B. P. Wham, T. D. O'Rourke, et al., "Earthquake Response and Rehabilitation of Critical Lifelines," in Proc. 15th World Conf. Earthq. Engng. PortugalL: Lissabon (Lissabon, 2012), Paper 5111.
15.  M. J. O'Rourke and X. Liu, Response of Buried Pipelines of Earthquake Effects in Publ. Multidisciplinary Center for Earthquake Engineering Research (Univ. of Buffalo, Buffalo, 1999).
16.  A. A. Il'yushin and T. R. Rashidov, "On the Action of Seismic Wave on Underground Pipelines," Izv. Akad. Nauk UzSSR, Ser. Tekhn. Nauk, No. 1, 37-42 (1971); in A. A. Il'yushin, Collected Works, Vol. 4: Modeling of Dynamic Processes in Solids and Engineering Applications (Fizmatlit, Moscow, 2009).
17.  T. R. Rashidov, Dynamical Theory of Seismic Resistance of Complex Systems of Underground Structures (Fan, Tashkent, 1973) [in Russian].
18.  M. Sh. Israilov, "Coupled Problems of Seismic Dynamics of Pipelines," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 5, 41-45 (1996) [Moscow Univ. Math. Bull. (Engl. Transl.)]
19.  M. Sh. Israilov, "Seismodynamics of an Underground Pipeline," in Proc. 15th World Conf. Earthq. Engng. Portugal: Lissabon (Lissabon, 2012), Paper 2125.
20.  P. Chadwick, A. D. Cox, and H. G. Hopkins, "Mechanics of Deep Underground Explosions," Philosoph. Trans. Roy. Soc. London. Ser. A. Math. Phys. Sci. 256, 235-300 (1964); Mechanics of Deep Underground Explosions (Mir, Moscow, 1966).
21.  T. R. Rashidov, "Study of Operation Conditions of Underground Pipelines during Earthquakes," Izv. Akad. Nauk UzSSR, Ser. Tekhn. Nauk, No. 5, 44-52 (1962).
22.  D. V. Georgievskii, "Self-Similar Solutions in the Problem of Generalized Vortex Diffusion," Izv. Akad. Nauk. Mekh. Zhidk. Gaza, No. 2, 3-12 (2007) [Fluid Dyn. (Engl. Transl.) 42 (2), 151-159 (2007)].
23.  D. V. Georgievskii, "The Diffusion of a Discontinuity of the Shear Stress at the Boundary of a Viscoplastic Half-Plane," Prikl. Mat. Mekh. 70 (5), 884-892 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (5), 796-803 (2006)].
24.  L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1987) [in Russian].
25.  L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).
26.  B. D. Annin, B. O. Bytev, and S. I. Senashov, Group Properties of Elasticity and Plasticity Equations (Nauka, Novosibirsk, 1985) [in Russian].
27.  Yonglin Xu, "Self-Similar Crack Expansion Method for Two-Dimensional Cracks under Mixed Mode Loading Conditions," Engng Fract. Mech. 59 (2), 165-182 (1998).
28.  B. E. Pobedrya, Mechanics of Composite Materials (Izdat. MGU, Moscow, 1984) [in Russian].
29.  B. E. Pobedrya, "On Fractals in Mechanics," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 1, 40-44 (2000) [Moscow Univ. Math. Bull. (Engl. Transl.)]
30.  O. E. Ivashnev and N. N. Smirnov, "Formation of Hydraulic Discontinuity Crack in a Porous Medium," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 6, 28-36 (2003) [Moscow Univ. Math. Bull. (Engl. Transl.)]
31.  A. V. Zvyagin, "Motion of a Viscous Fluid in a Channel with Elastic Boundaries," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 1, 50-54 (2005) [Moscow Univ. Math. Bull. (Engl. Transl.)]
32.  N. N. Smirnov and V. R. Tagirova, "Self-Similar Solutions of the Problem of Formation of a Hydraulic Fracture in a Porous Medium," Izv. Akad. Nauk. Mekh. Zhidk. Gaza, No. 1, 70-82 (2007) [Fluid Dyn. (Engl. Transl.) 42 (1), 60-70 (2007)].
33.  R. Tamsalu, P. Malkki, and K. Myrberg, "Self-Similarity Concept in Marine System Modeling," Geophysica 33 (2), 51-68 (1997).
34.  V. G. Baidulov, P. V. Matyushin, and Yu. D. Chashechkin, "Evolution of the Diffusion-Induced Flow over a Sphere Submerged in a Continuously Stratified Fluid," Izv. Akad. Nauk. Mekh. Zhidk. Gaza, No. 2, 119-132 (2007) [Fluid Dyn. (Engl. Transl.) 42 (2), 255-267 (2007)].
35.  E. M. Dobryshman, "Hydrodynamic Model of Unsteady Processes in the Typhoon Eye," Meteorolog. Gidrolog., No. 12, 5-18 (1996) [Rus. Metrol. Hydrol. (Engl. Transl.)].
36.  A. N. Vulfson, "Self-Similarity and Propagation of the Upper Boundary of Convective Thermics in Neutrally Stratified Atmosphere due to Point, Linear, and Plane Sources of Heat," Izv. Ross. Akad. Nauk. Fiz. Atmosf. Okeana 34 (4), 557-564 (1998) [Izv. Atmos. Ocean Phys. (Engl. Transl.)].
Received 28 March 2014
Link to Fulltext
<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100