Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2015-4pp.463-472

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
A.A. Bykov, V.P. Matveenko, G.S. Serovaev, I.N. Shardakov, and A.P. Shestakov, "Analysis of the Influence of Dynamic Phenomena on the Fracture of a Reinforced Concrete Beam under Quasistatic Loading (Computations and Experiment)," Mech. Solids. 50 (4), 463-472 (2015)
Year 2015 Volume 50 Number 4 Pages 463-472
DOI 10.3103/S0025654415040123
Title Analysis of the Influence of Dynamic Phenomena on the Fracture of a Reinforced Concrete Beam under Quasistatic Loading (Computations and Experiment)
Author(s) A.A. Bykov (Perm National Research Polytechnic University, Komsomolsky pr. 29, Perm, 614990 Russia, violentharpy@yandex.ru)
V.P. Matveenko (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, mvp@icmm.ru)
G.S. Serovaev (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, serovaev@icmm.ru)
I.N. Shardakov (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, shardakov@icmm.ru)
A.P. Shestakov (Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. Akad. Koroleva 1, Perm, 614013 Russia, shap@icmm.ru)
Abstract Construction of numerical models which reliably describe the processes of crack formation and development in reinforced concrete permit estimating the bearing capacity and structural strength of any structural element without using expensive full-scale experiments. In the present paper, an example of four-point bending of a rectangular beam is used to consider a finite-element model of concrete fracture. The results obtained by quasistatic calculations and by solving the problem with inertia forces taken into account are compared. The kinetic energy contribution to the total mechanical energy of the system at the crack origination moment, which is greater than 30%, is estimated to justify the expediency of taking the inertia forces into account. The crack distribution characters obtained numerically and observed experimentally are compared. It is shown that the leading role in the evolution of the crack formation process is played by the mechanism of fracture of bonds between the reinforcing elements and the concrete.
Keywords mathematical modeling, reinforced concrete, fracture, crack formation
References
1.  Yu. P. Skachkiov, "Determinations of Fracture and Crack Formation Schemes in Short Reinforced Concrete Beams from Experimental Data," Region. Arkhitekt. Stroit., No. 3, 74-82 (2013).
2.  V. M. Strulev and R. A. Yarkin, "Mechanism of Fracture and Methods for Increasing the Bearing Capacity of Flexible Reinforced Concrete Elements," Vestnik TGTU 6 (3), 474-477 (2000).
3.  G. Ruiz, M. Elices, and J. Planas, "Experimental Study of Fracture of Lightly Reinforced Concrete Beams," Mater. Struct. 31, 683-691 (1998).
4.  A. Carpinteru, J. R. Carmona, and G. Ventura, "Failure Mode Transitions in Reinforced Concrete Beams, Part 2: Experimental Tests," ACI Struct. J. 108 (3), 286-293 (2011).
5.  A. A. Bykov, V. P. Matveenko, G. S. Serovaev, et al., "Mathematical Modeling of Vibration Processes in Reinforced Concrete Structures for Setting Up Crack Initiation Monitoring," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 60-72 (2015). [Mech. Solids (Engl. Transl.) 50 (2), 160-170 (2015)].
6.  SP 63.13330.2012. Concrete and Reinforced Concrete Structures. Foundations. Actualization of SNiP 52-01-2003 (Minregion Rossii, Moscow, 2012) [in Russian].
7.  SP 52-101-2003. Concrete and Reinforced Concrete Structures without Prestressed Reinforcement (GUP "NIIZhB", FGUPTsPP, Moscow, 2004) [in Russian].
8.  GOST 8829-94. Factory-Made Reinforced Concrete and Concrete Structural Products. Loading Tests Methods. Rules for Estimating the Strength, Rigidity, and Crackresistance (Gosstroi Rossii GUPTsPP, Moscow, 1997) [in Russian].
9.  D. Kachlakev and T. F. E. Miller, Modeling of Reinforced Concrete Structures Strengthened with FRP Laminates, Final Report (Oregon Department of Transplantation, 2001).
10.  Y. R. Rashid, "Analysis of Prestressed Concrete Pressure Vessels," Nuclear Engng Des. 7 (4), 334-344 (1968).
11.  H. G. Kwak and C. F. Flippou, Finite Element Analysis of Reinforced Concrete Structures under Monotonic Loads, Report (Univ. of California, Berkely, 1990).
12.  L. Dahmani, A. Khennane, and S. Kaci, "Crack Identification in Reinforces Concrete Bemas Using ANSYS Software," Probl. Prochn., No. 2, 141-153 (2010) [Strength of Materials (Engl. Transl.) 42 (2), 232-240 (2010)].
13.  A. J. Wolansky, Flexural Behavior of Reinforced and Prestressed Concrete Beams Using Finite Element Analysis, Thesis (Marquette University, 2004).
14.  A. F. Barbosa and G. O. Ribeiro, "Analysis of Reinforced Concrete Structures Using ANSYS Nonlinear Concrete Model," in Proc. of Comp. Mechanics. New Trends and Applications, Barcelone, 1998 (Barcelone, 1998).
15.  V. B. Dawari and G. R. Vesmawala, "Application of Nonlinear Concrete Model for Finite Element Analysis of Reinforced Concrete Beams," Int. J. Sci. Engng Res. 5 (9), 776-782 (2014).
16.  A. B. Rasmussen, Analytical and Numerical Modeling of Reinforced Concrete in Serviceability Limit State, Thesis (Aarhus University, 2012).
17.  D. Ngo and A. C. Scordekus, "Finite Element Analysis of Reinforced Concrete Beams," J. ACI 64 (3), 152-163 (1967).
18.  A. L. Gamino, J. L. A. O. Sousa, and O. L. Manzoli, "A Comparative Study between Smeared and Embedded Crack Models for Finite Element Analysis of Reinforced Concrete Beams," in Proc. of FraMCoS. Korean Concrete Institute, 2010.
19.  K. J. William and E. P. Warnke, "Constitutive Model for the Triaxial Behavior of Concrete," Proc. Int. Associat. Bridge Struct. Engng 19, 1-30 (1974).
20.  A. I. Lurie, The Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].
21.  W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1975).
22.  N. N. Malinin, Applied Theory of Plasticity and Creep, Manual for students of higher educational institutions, 2nd. ed. (Mashinostroenie, Moscow, 1975) [in Russian].
23.  K. J. Bathe, Finite Element Procedures (Prentice Hall, Englewood Cliffs, HJ, 1996).
Received 04 May 2015
Link to Fulltext
<< Previous article | Volume 50, Issue 4 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100