Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2015-1pp.62-80

Archive of Issues

Total articles in the database: 9198
In Russian (. . ): 6504
In English (Mech. Solids): 2694

<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
K.B. Ustinov, "On Separation of a Layer from the Half-Plane: Elastic Fixation Conditions for a Plate Equivalent to the Layer," Mech. Solids. 50 (1), 62-80 (2015)
Year 2015 Volume 50 Number 1 Pages 62-80
DOI 10.3103/S0025654415010070
Title On Separation of a Layer from the Half-Plane: Elastic Fixation Conditions for a Plate Equivalent to the Layer
Author(s) K.B. Ustinov (A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, ustinov@ipmnet.ru)
Abstract The solution of the homogeneous problem on a half-infinite crack passing along the interface between a thin layer and an elastic half-plane made of materials with distinct properties is obtained and analyzed. Following [1-4], the two-sided Laplace transform is used to reduce the problem to a matrix Riemann problem. The class of combinations of elastic constants of the materials for which the matrix coefficient can be factorized by the method proposed in [1-4] is singled out. This factorization is used to generalize the problem studied in [1-4] to the case of distinct elastic constants of the layer and the half-plane (although they satisfy an additional condition). An asymptotic expression for the crack shore displacements far from the tip are obtained. It is shown that the leading terms of the asymptotics of the crack shore displacements correspond to the cantilever (plate) displacements under boundary conditions of the rigid fixation type, i.e., to the conditions that the displacements and the angle of rotation at the fixation point are proportional to the components of the resultant and the bending moment of the load. Some expressions for the entries of the matrix of elastic fixation coefficients are obtained.
Keywords separation, interface crack, factorization, elastic fixation
References
1.  A. N. Zlatin and A. A. Khrapkov, "A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane," Dokl. Akad. Nauk SSSR 31, 1009-1010 (1986) [Sov. Phys. Dokl. (Engl. Transl.) 31 (12), 1009-1010 (1986)].
2.  A. N. Zlatin and A. A. Khrapkov, "Elastic Half-Plane Weakened by a Crack Parallel to Its Boundary," in Studies in Elasticity and Plasticity, Vol. 16: Problems of Contemporary Fracture Mechanics (LGU, 1990), pp. 68-75 [in Russian].
3.  A. N. Zlatin and A. A. Khrapkov, "Vector Riemann Problem with Zero Index of Matrix-Coefficient Exponent," Izv. VNIIG im. B. E. Vedeneeva 181 12-16 (1985).
4.  A. A. Khrapkov, Wiener-Hopf Method in Mixed Elasticity Theory Problems (VNIIG, St. Petersburg, 2001) [in Russian].
5.  A. I. Kalandiia, Mathematical Methods of Two-Dimensional Elasticity (Nauka, Moscow, 1973) [in Russian].
6.  V. M. Alexandrov and S. M. Mkhitaryan, Contact Problems for Bodies with Thin Coatings and Interlayers (Nauka, Moscow, 1983) [in Russian].
7.  M. A. Grekov, Singular Plane Problem of Elasticity (Izd-vo SPb Univ., St. Petersburg, 2001) [in Russian].
8.  H.-H. Yu and J. W. Hutchinson, "Influence of Substrate Compliance on Buckling Delamination of Thin Films," Int. J. Fract. 113 (1), 39-55 (2000).
9.  G. N. Chebotarev, "To Solution of Riemann Boundary-Value Problem in Closed Form for Systems of n Pairs of Functions," Uch. Zap. Kazan Univ. 1166 (4), 31-58 (1956).
10.  A. E. Heins, "System of Wiener-Hopf Equations," in Proc. of Symposia in Applied Mathematics. II (McGraw Hill, 1950), pp. 76-81.
11.  D. S. Jones, "Commutative Wiener-Hopf Factorization of a Matrix," Proc. Roy. Soc. A 393 (4), 185-192 (1984).
12.  N. G. Moiseev, "Factorization of Matrix Functions of Special Form," Dokl. Akad. Nauk SSSR 305 (1), 44-47 (1989) [Sov. Math. Dokl. (Engl. Transl.) 39, 264-267 (1989)].
13.  Y. A. Antipov and N. G. Moiseev, "Exact Solution of the Plane Problem for a Composite Plane with a Cut across the Boundary between Two Media," J. Appl. Math. Mech. 55 (4), 531-539 (1991).
14.  I. D. Abrahams, "On the Noncommutative Factorization of Wiener-Hopf Kernels of Khrapkov Type," Proc. Roy. Soc. London A 454, 1719-1743 (1998).
15.  V. G. Daniele, "On the Factorization of Wiener-Hopf Matrices in Problem Solvable with Hurd's Method," Trans. ANTENNAS Propagate 26, 614-616 (1978).
16.  Y. A. Antipov and V. V. Silvestrov, "Factorization on a Riemann Surface in Scattering Theory," Quart. J. Mech. Appl. Math. 55, 607-654 (2002).
17.  Y. A. Antipov and V. V. Silvestrov, "Vector Functional Difference Equation in Electromagnetic Scattering," IMA J. Appl. Math. 69 (1), 27-69 (2004).
18.  J. W. Hutchinson and Z. Suo, "Mixed Mode Cracking in Layered Materials," in Advances in Applied Mechanics, Vol. 29, Ed. by J. W. Hutchinson and T. Y. Wu (1992), pp. 63-191.
19.  Z. Suo and J. W. Hutchinson, "Interface Crack between Two Elastic Layers," Int. J. Fract. 43, 1-18 (1990).
20.  K. B. Ustinov, "On Shear Separation of a Thin Strip from the Half-Plane," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 141-152 (2014) [Mech. Solids (Engl. Transl.) 49 (6), 713-724 (2014)].
21.  M. D. Thouless, A. G. Evans, M. F. Ashby, and J. W. Hutchinson, "The Edge Cracking and Spalling of Brittle Plates," Acta Metall. 35, 1333-1341 (1997).
22.  R. L. Salganik, "The Brittle Fracture of Cemented Bodies," Prikl. Mat. Mekh. 27 (5), 957-962 (1963) [J. Appl. Math. Mech. (Engl. Transl.) 27 (5), 1468-1478 (1963)].
23.  B. M. Malyshev and R. L. Salganik, "The Strength of Adhesive Joints Using the Theory of Crack," Int. J. Fract. Mech. 1 (2), 114-128 (1965).
24.  G. Doetsch, Handbook der Laplace-Transformation (Birkhäuser, Basel, 1946; Fizmatlit, Moscow, 1958).
25.  K. B. Ustinov, A. V. Dyskin, and L. N. Germanovich, "Asymptotic Analysis of Extensive Crack Growth Parallel to Free Boundary," in 3rd Int. Conf. Localized Damage 94, Southampton: Comput. Mech.Publ. (1994), pp. 623-630.
26.  K. B. Ustinov, On Shear Separation of a Thin Strip from the Half-Plane, Preprint No. 1047 (IPMekh RAN, Moscow, 2013) [in Russian].
27.  B. Cotterell and Z. Chen, "Buckling and Cracking of Thin Film on Compliant Substrates under Compression," Int. J. Fract. 104 (2), 169-179 (2000).
28.  R. L. Salganik and K. B. Ustinov, "Deformation Problem for an Elastically Fixed Plate Modeling a Coating Partially Delaminated from the Substrate (Plane Strain)," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 50-62 (2012) [Mech. Solids (Engl. Transl.) 47 (4), 415-425 (2012)].
Received 23 July 2013
Link to Fulltext http://link.springer.com/article/10.3103/S0025654415010070
<< Previous article | Volume 50, Issue 1 / 2015 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100